複素解析幾何セミナー
過去の記録 ~03/27|次回の予定|今後の予定 03/28~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2020年06月29日(月)
10:30-12:00 オンライン開催
日下部佑太 氏 (大阪大学)
Oka properties of complements of holomorphically convex sets
https://forms.gle/vSFPoVR6ugrkTGhX7
日下部佑太 氏 (大阪大学)
Oka properties of complements of holomorphically convex sets
[ 講演概要 ]
A complex manifold is called an Oka manifold if the Oka principle for maps from Stein spaces holds. In this talk, we consider the question of when a holomorphically convex set in an Oka manifold has an Oka complement. Our main theorem states that the complement of a compact holomorphically convex set in a Stein manifold with the density property is an Oka manifold. This gives a positive answer to the well-known long-standing problem in Oka theory whether the complement of a compact polynomially convex set in $\mathbb{C}^{n}$ $(n>1)$ is Oka. The relative version of the main theorem can also be proved. As an application, we show that the complement $\mathbb{C}^{n}\setminus\mathbb{R}^{k}$ of a totally real affine subspace is Oka if $n>1$ and $(n,k)\neq(2,1),(2,2),(3,3)$.
[ 参考URL ]A complex manifold is called an Oka manifold if the Oka principle for maps from Stein spaces holds. In this talk, we consider the question of when a holomorphically convex set in an Oka manifold has an Oka complement. Our main theorem states that the complement of a compact holomorphically convex set in a Stein manifold with the density property is an Oka manifold. This gives a positive answer to the well-known long-standing problem in Oka theory whether the complement of a compact polynomially convex set in $\mathbb{C}^{n}$ $(n>1)$ is Oka. The relative version of the main theorem can also be proved. As an application, we show that the complement $\mathbb{C}^{n}\setminus\mathbb{R}^{k}$ of a totally real affine subspace is Oka if $n>1$ and $(n,k)\neq(2,1),(2,2),(3,3)$.
https://forms.gle/vSFPoVR6ugrkTGhX7