複素解析幾何セミナー
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2018年10月29日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
松村慎一 氏 (東北大学)
On morphisms of compact Kaehler manifolds with semi-positive holomorphic sectional curvature (JAPANESE)
松村慎一 氏 (東北大学)
On morphisms of compact Kaehler manifolds with semi-positive holomorphic sectional curvature (JAPANESE)
[ 講演概要 ]
In this talk, we consider a smooth projective variety $X$ with semi-positive holomorphic "sectional" curvature, motivated by generalizing Howard-Smyth-Wu's structure theorem and Mok's result for compact Kaehler manifold with semi-positive "bisectional" curvature.
We prove that, if $X$ admits a holomorphic maximally rationally connected fibration $X ¥to Y$, then the morphism is always smooth (that is, a submersion), that the image $Y$ admits a finite ¥'etale cover $T ¥to Y$ by a complex
torus $T$, and further that all the fibers $F$ are isomorphic.
This gives a structure theorem for $X$ when $X$ is a surface.
Moreover we show that $X$ is rationally connected, if the holomorphic sectional curvature is quasi-positive.
This result gives a generalization of Yau's conjecture.
In this talk, we consider a smooth projective variety $X$ with semi-positive holomorphic "sectional" curvature, motivated by generalizing Howard-Smyth-Wu's structure theorem and Mok's result for compact Kaehler manifold with semi-positive "bisectional" curvature.
We prove that, if $X$ admits a holomorphic maximally rationally connected fibration $X ¥to Y$, then the morphism is always smooth (that is, a submersion), that the image $Y$ admits a finite ¥'etale cover $T ¥to Y$ by a complex
torus $T$, and further that all the fibers $F$ are isomorphic.
This gives a structure theorem for $X$ when $X$ is a surface.
Moreover we show that $X$ is rationally connected, if the holomorphic sectional curvature is quasi-positive.
This result gives a generalization of Yau's conjecture.