Processing math: 100%

東京無限可積分系セミナー

過去の記録 ~06/27次回の予定今後の予定 06/28~

開催情報 土曜日 13:30~16:00 数理科学研究科棟(駒場) 117号室
担当者 神保道夫、国場敦夫、山田裕二、武部尚志、高木太一郎、白石潤一
セミナーURL https://www.ms.u-tokyo.ac.jp/~takebe/iat/index-j.html

2018年10月04日(木)

16:00-17:00   数理科学研究科棟(駒場) 002号室
Andrew Kels 氏 (東大総合文化)
Integrable quad equations derived from the quantum Yang-Baxter
equation. (ENGLISH)
[ 講演概要 ]
I will give an overview of an explicit correspondence that exists between
two different types of integrable equations; 1) the quantum Yang-Baxter
equation in its star-triangle relation (STR) form, and 2) the classical
3D-consistent quad equations in the Adler-Bobenko-Suris (ABS)
classification. The fundamental aspect of this correspondence is that the
equation of the critical point of a STR is equivalent to an ABS quad
equation. The STR's considered here are in fact equivalent to
hypergeometric integral transformation formulas. For example, a STR for
H1(ε=0) corresponds to the Euler Beta function, a STR for
Q1(δ=0) corresponds to the n=1 Selberg integral, and STR's for
H2ε=0,1, H1(ε=1), correspond to different
hypergeometric integral formulas of Barnes. I will discuss some of these
examples and some directions for future research.