トポロジー火曜セミナー
過去の記録 ~09/11|次回の予定|今後の予定 09/12~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2018年06月05日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
松井 宏樹 氏 (千葉大学)
Topological full groups and generalizations of the Higman-Thompson groups (JAPANESE)
Tea: Common Room 16:30-17:00
松井 宏樹 氏 (千葉大学)
Topological full groups and generalizations of the Higman-Thompson groups (JAPANESE)
[ 講演概要 ]
For a topological dynamical system on the Cantor set, one can introduce its topological full group, which is a countable subgroup of the homeomorphism group of the Cantor set. The Higman-Thompson group V_n is regarded as the topological full group of the one-sided full shift over n symbols. Replacing the one-sided full shift with other dynamical systems, we obtain variants of the Higman-Thompson group. It is then natural to ask whether those generalized Higman-Thompson groups possess similar (or different) features. I would like to discuss isomorphism classes of these groups, finiteness properties, abelianizations, connections to C*-algebras and their K-theory, and so on.
For a topological dynamical system on the Cantor set, one can introduce its topological full group, which is a countable subgroup of the homeomorphism group of the Cantor set. The Higman-Thompson group V_n is regarded as the topological full group of the one-sided full shift over n symbols. Replacing the one-sided full shift with other dynamical systems, we obtain variants of the Higman-Thompson group. It is then natural to ask whether those generalized Higman-Thompson groups possess similar (or different) features. I would like to discuss isomorphism classes of these groups, finiteness properties, abelianizations, connections to C*-algebras and their K-theory, and so on.