Tuesday Seminar on Topology
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2018/06/05
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Hiroki Matui (Chiba University)
Topological full groups and generalizations of the Higman-Thompson groups (JAPANESE)
Hiroki Matui (Chiba University)
Topological full groups and generalizations of the Higman-Thompson groups (JAPANESE)
[ Abstract ]
For a topological dynamical system on the Cantor set, one can introduce its topological full group, which is a countable subgroup of the homeomorphism group of the Cantor set. The Higman-Thompson group V_n is regarded as the topological full group of the one-sided full shift over n symbols. Replacing the one-sided full shift with other dynamical systems, we obtain variants of the Higman-Thompson group. It is then natural to ask whether those generalized Higman-Thompson groups possess similar (or different) features. I would like to discuss isomorphism classes of these groups, finiteness properties, abelianizations, connections to C*-algebras and their K-theory, and so on.
For a topological dynamical system on the Cantor set, one can introduce its topological full group, which is a countable subgroup of the homeomorphism group of the Cantor set. The Higman-Thompson group V_n is regarded as the topological full group of the one-sided full shift over n symbols. Replacing the one-sided full shift with other dynamical systems, we obtain variants of the Higman-Thompson group. It is then natural to ask whether those generalized Higman-Thompson groups possess similar (or different) features. I would like to discuss isomorphism classes of these groups, finiteness properties, abelianizations, connections to C*-algebras and their K-theory, and so on.