複素解析幾何セミナー

過去の記録 ~09/14次回の予定今後の予定 09/15~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2018年05月28日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
中村聡 氏 (東北大学)
A generalization of Kähler Einstein metrics for Fano manifolds with non-vanishing Futaki invariant (JAPANESE)
[ 講演概要 ]
The existence problem of Kähler Einstein metrics for Fano manifolds was one of the central problems in Kähler Geometry. The vanishing of the Futaki invariant is known as an obstruction to the existence of Kähler Einstein metrics. Generalized Kähler Einstein metrics (GKE for short), introduced by Mabuchi in 2000, is a generalization of Kähler Einstein metrics for Fano manifolds with non-vanishing Futaki invariant. In this talk, we give the followings:
(i) The positivity for the Hessian of the Ricci Calabi functional which characterizes GKE as its critical points, and its application.
(ii) A criterion for the existence of GKE on toric Fano manifolds from view points of an algebraic stability and an analytic stability.