談話会・数理科学講演会
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
担当者 | 足助太郎,寺田至,長谷川立,宮本安人(委員長) |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2018年03月10日(土)
14:30-15:30 数理科学研究科棟(駒場) 大講義室号室
川又雄二郎 氏 (東大数理)
双有理幾何学と導来圏 (JAPANESE)
川又雄二郎 氏 (東大数理)
双有理幾何学と導来圏 (JAPANESE)
[ 講演概要 ]
極小モデル理論によれば、代数多様体の間の双有理写像は基本的な双有理写像(フリップや因子収縮写像)に分解され、双有理幾何学は双正則幾何学に帰着される。その際の道案内になるのが標準因子Kである。代数多様体上の幾何学はその上の連接層によって表現されるが、連接層全体のなすアーベル圏から、複体を考え局所化することによって対称性がアップした導来圏Dが得られる。Kの変化とDの変化の間には思いがけず密接な関係が観測された。一方、有限群による商特異点の極小特異点解消(幾何学)とその群の表現(代数)の間には隠れた関係(マッカイ対応)が観測される。これらを総合した予想としてDK予想がある。最近の進展について解説する。
極小モデル理論によれば、代数多様体の間の双有理写像は基本的な双有理写像(フリップや因子収縮写像)に分解され、双有理幾何学は双正則幾何学に帰着される。その際の道案内になるのが標準因子Kである。代数多様体上の幾何学はその上の連接層によって表現されるが、連接層全体のなすアーベル圏から、複体を考え局所化することによって対称性がアップした導来圏Dが得られる。Kの変化とDの変化の間には思いがけず密接な関係が観測された。一方、有限群による商特異点の極小特異点解消(幾何学)とその群の表現(代数)の間には隠れた関係(マッカイ対応)が観測される。これらを総合した予想としてDK予想がある。最近の進展について解説する。