複素解析幾何セミナー
過去の記録 ~10/10|次回の予定|今後の予定 10/11~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2017年10月02日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
千葉 優作 氏 (お茶の水女子大学)
The extension of holomorphic functions on a non-pluriharmonic locus
千葉 優作 氏 (お茶の水女子大学)
The extension of holomorphic functions on a non-pluriharmonic locus
[ 講演概要 ]
Let $n \geq 4$ and let $\Omega$ be a bounded hyperconvex domain in $\mathbb{C}^{n}$. Let $\varphi$ be a negative exhaustive smooth plurisubharmonic function on $\Omega$. In this talk, we show that any holomorphic function defined on a connected open neighborhood of the support of $(i\partial \overline{\partial}\varphi)^{n-3}$ can be extended to the holomorphic function on $\Omega$.
Let $n \geq 4$ and let $\Omega$ be a bounded hyperconvex domain in $\mathbb{C}^{n}$. Let $\varphi$ be a negative exhaustive smooth plurisubharmonic function on $\Omega$. In this talk, we show that any holomorphic function defined on a connected open neighborhood of the support of $(i\partial \overline{\partial}\varphi)^{n-3}$ can be extended to the holomorphic function on $\Omega$.