談話会・数理科学講演会
過去の記録 ~03/27|次回の予定|今後の予定 03/28~
担当者 | 会田茂樹,大島芳樹,志甫淳(委員長),高田了 |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2016年12月07日(水)
15:30-16:30 数理科学研究科棟(駒場) 056号室
Uwe Jannsen 氏 (Regensburg/東大数理)
On a conjecture of Bloch and Kato, and a local analogue.
Uwe Jannsen 氏 (Regensburg/東大数理)
On a conjecture of Bloch and Kato, and a local analogue.
[ 講演概要 ]
In their seminal paper on Tamagawa Numbers of motives,
Bloch and Kato introduced a notion of motivic pairs, without
loss of generality over the rational numbers, which should
satisfy certain properties (P1) to (P4). The last property
postulates the existence of a Galois stable lattice T in the
associated adelic Galois representation V such that for each
prime p the fixed module of the inertia group of Q_p of
V/T is l-divisible for almost all primes l different from p.
I postulate an analogous local conjecture and show that it
implies the global conjecture.
In their seminal paper on Tamagawa Numbers of motives,
Bloch and Kato introduced a notion of motivic pairs, without
loss of generality over the rational numbers, which should
satisfy certain properties (P1) to (P4). The last property
postulates the existence of a Galois stable lattice T in the
associated adelic Galois representation V such that for each
prime p the fixed module of the inertia group of Q_p of
V/T is l-divisible for almost all primes l different from p.
I postulate an analogous local conjecture and show that it
implies the global conjecture.