複素解析幾何セミナー

過去の記録 ~04/13次回の予定今後の予定 04/14~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2016年10月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
野村 隆昭 氏 (九州大学)
等質開凸錐の実現 (JAPANESE)
[ 講演概要 ]
等質開凸錐は等質ジーゲル領域の構成要素の一つである.その観点で,等質開凸錐の研究を,伊師英之,中島秀斗,山崎貴史等,若い研究者達と一緒にここ10年ほど続けてきて得られた成果のいくつかを紹介したい.中心となる話題は等質開凸錐の実現であり,これは山崎との共著論文として昨年の Kyushu J. Math.に出版されたもので,向き付けグラフを援用しながら,5次元の非対称等質開凸錐の記述にVinbergが用いたアイデア(露語オリジナルは1960年)が,そのままの形で一般の等質開凸錐の実現に通用することを示すものである.基本相対不変式における伊師等による成果を用いる証明を完全にブラックボックス化し,結果としては単に手続きを述べる形になっているので,非専門家にもアクセスが容易で,統計学等への応用も可能であると考えている.また,一般の非対称等質開凸錐に付随する管状領域の正則同型群やその構造の研究への応用も十分に見込める.さらに,Graczyk-Ishi による等質開凸錐の presentation (2014)の内で最小サイズのものも,上述の実現からやはり単なる手続き論で得られる.呈示される行列のサイズ等や零行列となるブロック・小ブロック等も,付随する向き付けグラフから読み取れる.