談話会・数理科学講演会
過去の記録 ~10/09|次回の予定|今後の予定 10/10~
担当者 | 足助太郎,寺田至,長谷川立,宮本安人(委員長) |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2015年09月25日(金)
16:50-17:50 数理科学研究科棟(駒場) 大講義室号室
Gerhard Huisken 氏 (The Mathematisches Forschungsinstitut Oberwolfach )
Mean curvature flow with surgery
http://www.mfo.de/about-the-institute/staff/prof.-dr.-gerhard-huisken
Gerhard Huisken 氏 (The Mathematisches Forschungsinstitut Oberwolfach )
Mean curvature flow with surgery
[ 講演概要 ]
We study the motion of hypersurfaces in a Riemannian manifold
with normal velocity equal to the mean curvature of the
evolving hypersurface. In general this quasilinear, parabolic
evolution system may have complicated singularities in finite time.
However, under natural assumptions such as embeddedness of the surface
and positivity of the mean curvature (case of 2-dimensional surfaces)
all singularities can be classified and developing "necks" can be
removed by a surgery procedure similar to techniques employed
by Hamilton and Perelman in the Ricci-flow of Riemannian metrics.
The lecture describes results and techniques for mean curvature flow
with surgery developed in joint work with C. Sinestrari and S. Brendle.
[ 参考URL ]We study the motion of hypersurfaces in a Riemannian manifold
with normal velocity equal to the mean curvature of the
evolving hypersurface. In general this quasilinear, parabolic
evolution system may have complicated singularities in finite time.
However, under natural assumptions such as embeddedness of the surface
and positivity of the mean curvature (case of 2-dimensional surfaces)
all singularities can be classified and developing "necks" can be
removed by a surgery procedure similar to techniques employed
by Hamilton and Perelman in the Ricci-flow of Riemannian metrics.
The lecture describes results and techniques for mean curvature flow
with surgery developed in joint work with C. Sinestrari and S. Brendle.
http://www.mfo.de/about-the-institute/staff/prof.-dr.-gerhard-huisken