東京無限可積分系セミナー

過去の記録 ~10/10次回の予定今後の予定 10/11~

開催情報 土曜日 13:30~16:00 数理科学研究科棟(駒場) 117号室
担当者 神保道夫、国場敦夫、山田裕二、武部尚志、高木太一郎、白石潤一
セミナーURL https://www.ms.u-tokyo.ac.jp/~takebe/iat/index-j.html

2015年02月19日(木)

13:30-17:00   数理科学研究科棟(駒場) 002号室
辻俊輔 氏 (東大数理) 13:30-15:00
スケイン代数と写像類群 (JAPANESE)
[ 講演概要 ]
向き付けられた曲面と閉区間[0,1]の積多様体のスケイン代数とスケイン加群にのフィルトレーションを定義して、またそのフィルトレーションにより、完備スケイン代数と完備スケイン加群を定義した。完備スケイン代数による完備スケイン加群への作用により、デーン・ツィストの公式を得た。その応用として、ジョンソン核のスケイン加群への作用をスケイン代数で記述した。
野崎雄太 氏 (東大数理) 15:30-17:00
LMO関手の拡張 (JAPANESE)
[ 講演概要 ]
Cheptea-葉廣-Massuyeau は,閉 3 次元多様体の LMO 不変量の拡張として LMO 関手を導入した.LMO 関手は「高々 1 個の境界成分を持つ曲面の間の Lagrangian コボルディズムを射とするモノイダル圏」から「top-substantial Jacobi 図の形式的級数を射とするモノイダル圏」へのテンソル積を保つ関手である.本講演では,曲面が任意個数の境界成分を持つ場合に対する LMO 関手の拡張を紹介する.さらにその d 次の項が d 次の有限型不変量であることを説明する.