複素解析幾何セミナー
過去の記録 ~05/22|次回の予定|今後の予定 05/23~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2014年11月10日(月)
10:30-12:00 数理科学研究科棟(駒場) 126号室
千葉 優作 氏 (東工大理工)
多重劣調和関数の凸なレベル集合とモンジュ・アンペールカレントの台について (JAPANESE)
千葉 優作 氏 (東工大理工)
多重劣調和関数の凸なレベル集合とモンジュ・アンペールカレントの台について (JAPANESE)
[ 講演概要 ]
In this talk, we study a geometric property of a continuous plurisubharmonic function which is a solution of the Monge-Ampere equation and has a convex level set. By using our results and Lempert's results, we show a relation between the supports of the Monge-Ampere currents and complex $k$-extreme points of closed balls for the Kobayashi distance in a bounded convex domain in $C^n$.
In this talk, we study a geometric property of a continuous plurisubharmonic function which is a solution of the Monge-Ampere equation and has a convex level set. By using our results and Lempert's results, we show a relation between the supports of the Monge-Ampere currents and complex $k$-extreme points of closed balls for the Kobayashi distance in a bounded convex domain in $C^n$.