複素解析幾何セミナー
過去の記録 ~05/24|次回の予定|今後の予定 05/25~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2014年06月23日(月)
10:30-12:00 数理科学研究科棟(駒場) 126号室
野口潤次郎 氏 (東京大学)
岡の第1連接定理の証明に於ける割り算法についての一注意 (JAPANESE)
野口潤次郎 氏 (東京大学)
岡の第1連接定理の証明に於ける割り算法についての一注意 (JAPANESE)
[ 講演概要 ]
The problem is the local finite generation of a relation sheaf R(f1,…,fq) in On=OCn. After fj reduced to Weierstrass' polynomials in zn, it is the key to apply the induction in n to show that elements of R(f1,…,q) are expressed by zn-polynomial-like elements of degree at most p=max over \mathcal{O}_n. In that proof one is used to use a divison by f_j of \deg f_j=p (Oka '48, Cartan '50, Hörmander, Demailly, . . .). In this talk we shall confirm that the division abve works by making use of f_k of the minimum degree \min_j \deg f_j. This proof is natrually compatible with the simple case when some f_j is a unit, and gives some improvement in the degree estimate of generators.
The problem is the local finite generation of a relation sheaf R(f1,…,fq) in On=OCn. After fj reduced to Weierstrass' polynomials in zn, it is the key to apply the induction in n to show that elements of R(f1,…,q) are expressed by zn-polynomial-like elements of degree at most p=max over \mathcal{O}_n. In that proof one is used to use a divison by f_j of \deg f_j=p (Oka '48, Cartan '50, Hörmander, Demailly, . . .). In this talk we shall confirm that the division abve works by making use of f_k of the minimum degree \min_j \deg f_j. This proof is natrually compatible with the simple case when some f_j is a unit, and gives some improvement in the degree estimate of generators.