複素解析幾何セミナー

過去の記録 ~12/10次回の予定今後の予定 12/11~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

2012年12月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
生駒 英晃 氏 (京都大学)
算術多様体上のノルムの小さい基底の存在について
(JAPANESE)
[ 講演概要 ]
I would like to talk about some recent work of mine on the asymptotic behavior of the successive minima associated to a graded arithmetic linear series. A complete arithmetic linear series belonging to a hermitian line bundle on an arithmetic variety is defined as the Z-module of the global sections endowed with the supremum-norm, and the successive minima are invariants that measure the size of the sections with small norms.
If time permits, I would like to also explain some close relationship between the results and the general equi-distribution theory of rational points on an arithmetic variety.