複素解析幾何セミナー

過去の記録 ~02/06次回の予定今後の予定 02/07~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴, 野村 亮介

2012年05月07日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
松本佳彦 氏 (東大数理)
The second metric variation of the total $Q$-curvature in conformal geometry (JAPANESE)
[ 講演概要 ]
Branson's $Q$-curvature of even-dimensional compact conformal manifolds integrates to a global conformal invariant called the total $Q$-curvature. While it is topological in two dimensions and is essentially the Weyl action in four dimensions, in the higher dimensional cases its geometric meaning remains mysterious. Graham and Hirachi have shown that the first metric variation of the total $Q$-curvature coincides with the Fefferman-Graham obstruction tensor. In this talk, the second variational formula will be presented, and it will be made explicit especially for conformally Einstein manifolds. The positivity of the second variation will be discussed in connection with the smallest eigenvalue of the Lichnerowicz Laplacian.