複素解析幾何セミナー
過去の記録 ~01/20|次回の予定|今後の予定 01/21~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
2011年11月28日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
松村慎一 氏 (東大数理)
An ampleness criterion with the extendability of singular positive metrics (JAPANESE)
松村慎一 氏 (東大数理)
An ampleness criterion with the extendability of singular positive metrics (JAPANESE)
[ 講演概要 ]
Coman, Guedj and Zeriahi proved that, for an ample line bundle $L$ on a projective manifold $X$, any singular positive metric on the line bundle $L|_{V}$ along a subvariety $V \subset X$ can be extended to a global singular positive metric of $L$. In this talk, we prove that the extendability of singular positive metrics on a line bundle along a subvariety implies the ampleness of the line bundle.
Coman, Guedj and Zeriahi proved that, for an ample line bundle $L$ on a projective manifold $X$, any singular positive metric on the line bundle $L|_{V}$ along a subvariety $V \subset X$ can be extended to a global singular positive metric of $L$. In this talk, we prove that the extendability of singular positive metrics on a line bundle along a subvariety implies the ampleness of the line bundle.