Lie群論・表現論セミナー

過去の記録 ~07/13次回の予定今後の予定 07/14~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室
担当者 小林俊行
セミナーURL https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2011年11月15日(火)

16:30-18:00   数理科学研究科棟(駒場) 126号室
Laurant Demonet 氏 (Nagoya University)
Categorification of cluster algebras arising from unipotent subgroups of non-simply laced Lie groups (ENGLISH)
[ 講演概要 ]
We introduce an abstract framework to categorify some antisymetrizable cluster algebras by using actions of finite groups on stably 2-Calabi-Yau exact categories. We introduce the notion of the equivariant category and, with similar technics as in [K], [CK], [GLS1], [GLS2], [DK], [FK], [P], we construct some examples of such categorifications. For example, if we let Z/2Z act on the category of representations of the preprojective algebra of type A2n-1 via the only non trivial action on the diagram, we obtain the cluster structure on the coordinate ring of the maximal unipotent subgroup of the semi-simple Lie group of type Bn [D]. Hence, we can get relations between the cluster algebras categorified by some exact subcategories of these two categories. We also prove by the same methods as in [FK] a conjecture of Fomin and Zelevinsky stating that the cluster monomials are linearly independent.

References
[CK] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169--211.
[DK] R. Dehy, B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, arXiv: 0709.0882.
[D] L. Demonet, Cluster algebras and preprojective algebras: the non simply-laced case, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 379--384.
[FK] C. Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, arXiv: 0710.3152.
[GLS1] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589--632.
[GLS2] C. Geiss, B. Leclerc, J. Schröer, Cluster algebra structures and semicanoncial bases for unipotent groups, arXiv: math/0703039.
[K] B. Keller, Categorification of acyclic cluster algebras: an introduction, arXiv: 0801.3103.
[P] Y. Palu, Cluster characters for triangulated 2-Calabi--Yau categories, arXiv: math/0703540.