過去の記録 ~10/04次回の予定今後の予定 10/05~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室
担当者 小林俊行


16:30-18:00   数理科学研究科棟(駒場) 126号室
椋野純一 氏 (名古屋大学)
Properly discontinuous isometric group actions on inhomogeneous Lorentzian manifolds (JAPANESE)
[ 講演概要 ]
If a homogeneous space $G/H$ is acted properly discontinuously
upon by a subgroup $\\Gamma$ of $G$ via the left action, the quotient space $\\Gamma \\backslash G/H$ is called a
Clifford--Klein form. In 1962, E. Calabi and L. Markus proved that there is no infinite subgroup of the Lorentz group $O(n+1, 1)$ whose left action on the de Sitter space $O(n+1, 1)/O(n, 1)$ is properly discontinuous.
It follows that a compact Clifford--Klein form of the de Sitter space never exists.
In this talk, we present a new extension of the theorem of E. Calabi and L. Markus to a certain class of Lorentzian manifolds that are not necessarily homogeneous.