談話会・数理科学講演会
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
担当者 | 足助太郎,寺田至,長谷川立,宮本安人(委員長) |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2010年04月23日(金)
16:30-17:30 数理科学研究科棟(駒場) 123号室
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)
松本 眞 氏 (東京大学大学院数理科学研究科)
疑似乱数発生に用いられる数学:メルセンヌ・ツイスターを例に (JAPANESE)
https://www.ms.u-tokyo.ac.jp/~matumoto/PRESENTATION/tokyo-univ2010-4-23.pdf
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)
松本 眞 氏 (東京大学大学院数理科学研究科)
疑似乱数発生に用いられる数学:メルセンヌ・ツイスターを例に (JAPANESE)
[ 講演概要 ]
疑似乱数生成法とは、あたかも乱数であるかのようにふるまう数列を、計算機内で高速に、再現性があるように生成する方法の総称です。確率的事象を含む現象の計算機シミュレーションには、疑似乱数は欠かせません。たとえば、核物理シミュレーション、株価に関する商品の評価、DNA塩基配列からのたんぱく質の立体構造推定など、広い範囲で疑似乱数は利用されています。講演者と西村拓士氏が97年に開発したメルセン・ツイスタ―生成法は、生成が高速なうえ周期が$2^19937-1$で623次元空間に均等分布することが証明されており、ISO規格にも取り入れられるなど広く利用が進んでいます。ここでは、メルセンヌ・ツイスターとその後の発展において、(初等的・古典的な)純粋数学(有限体、線形代数、多項式、べき級数環、格子など)がどのように使われたかを、非専門家向けに解説します。学部1年生を含め、他学部・他専攻の方の参加を期待して講演を準備します。
[ 参考URL ]疑似乱数生成法とは、あたかも乱数であるかのようにふるまう数列を、計算機内で高速に、再現性があるように生成する方法の総称です。確率的事象を含む現象の計算機シミュレーションには、疑似乱数は欠かせません。たとえば、核物理シミュレーション、株価に関する商品の評価、DNA塩基配列からのたんぱく質の立体構造推定など、広い範囲で疑似乱数は利用されています。講演者と西村拓士氏が97年に開発したメルセン・ツイスタ―生成法は、生成が高速なうえ周期が$2^19937-1$で623次元空間に均等分布することが証明されており、ISO規格にも取り入れられるなど広く利用が進んでいます。ここでは、メルセンヌ・ツイスターとその後の発展において、(初等的・古典的な)純粋数学(有限体、線形代数、多項式、べき級数環、格子など)がどのように使われたかを、非専門家向けに解説します。学部1年生を含め、他学部・他専攻の方の参加を期待して講演を準備します。
https://www.ms.u-tokyo.ac.jp/~matumoto/PRESENTATION/tokyo-univ2010-4-23.pdf