Lie群論・表現論セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2009年06月15日(月)
16:30-18:00 数理科学研究科棟(駒場) 126号室
Vladimir P. Kostov 氏 (Nice大学)
On the Schur-Szeg\\"o composition of polynomials
Vladimir P. Kostov 氏 (Nice大学)
On the Schur-Szeg\\"o composition of polynomials
[ 講演概要 ]
The Schur-Szeg\\"o composition of the degree $n$ polynomials $P:=\\sum_{j=0}^na_jx^j$ and $Q:=\\sum_{j=0}^nb_jx^j$ is defined by the formula $P*Q:=\\sum_{j=0}^na_jb_jx^j/C_n^j$ where $C_n^j=n!/j!(n-j)!$. Every degree $n$ polynomial having one of its roots at $-1$ (i.e. $P=(x+1)(x^{n-1}+c_1x^{n-2}+\\cdots +c_{n-1})$) is representable as a Schur-Szeg\\"o composition of $n-1$ polynomials of the form $(x+1)^{n-1}(x+a_i)$ where the numbers $a_i$ are uniquely defined up to permutation. Denote the elementary symmetric polynomials of the numbers $a_i$ by $\\sigma_1$, $\\ldots$, $\\sigma_{n-1}$. The talk will focus on some properties of the affine mapping
$$(c_1,\\ldots ,c_{n-1})\\mapsto (\\sigma_1,\\ldots ,\\sigma_{n-1})$$
The Schur-Szeg\\"o composition of the degree $n$ polynomials $P:=\\sum_{j=0}^na_jx^j$ and $Q:=\\sum_{j=0}^nb_jx^j$ is defined by the formula $P*Q:=\\sum_{j=0}^na_jb_jx^j/C_n^j$ where $C_n^j=n!/j!(n-j)!$. Every degree $n$ polynomial having one of its roots at $-1$ (i.e. $P=(x+1)(x^{n-1}+c_1x^{n-2}+\\cdots +c_{n-1})$) is representable as a Schur-Szeg\\"o composition of $n-1$ polynomials of the form $(x+1)^{n-1}(x+a_i)$ where the numbers $a_i$ are uniquely defined up to permutation. Denote the elementary symmetric polynomials of the numbers $a_i$ by $\\sigma_1$, $\\ldots$, $\\sigma_{n-1}$. The talk will focus on some properties of the affine mapping
$$(c_1,\\ldots ,c_{n-1})\\mapsto (\\sigma_1,\\ldots ,\\sigma_{n-1})$$