Lie群論・表現論セミナー
過去の記録 ~11/07|次回の予定|今後の予定 11/08~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2008年11月18日(火)
16:30-18:00 数理科学研究科棟(駒場) 126号室
Jorge Vargas 氏 (FAMAF-CIEM, C\'ordoba)
Liouville measures and multiplicity formulae for admissible restriction of Discrete Series
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
Jorge Vargas 氏 (FAMAF-CIEM, C\'ordoba)
Liouville measures and multiplicity formulae for admissible restriction of Discrete Series
[ 講演概要 ]
Let $H \\subset G$ be reductive matrix Lie groups. We fix a square integrable irreducible representation $\\pi$ of $G.$
Let $\\Omega $ denote the coadjoint orbit of the Harish-Chandra parameter of $\\pi.$
Assume $\\pi$ restricted to $H$ is admissible. In joint work with Michel Duflo, by means of "discrete" and "continuos" Heaviside functions we relate the multiplicity of each irreducible $H-$factor of $\\pi$ restricted to $H$ and push forward to $\\mathfrak h^\\star$ of the Liouville measure for $\\Omega.$ This generalizes work of Duflo-Heckman-Vergne.
[ 参考URL ]Let $H \\subset G$ be reductive matrix Lie groups. We fix a square integrable irreducible representation $\\pi$ of $G.$
Let $\\Omega $ denote the coadjoint orbit of the Harish-Chandra parameter of $\\pi.$
Assume $\\pi$ restricted to $H$ is admissible. In joint work with Michel Duflo, by means of "discrete" and "continuos" Heaviside functions we relate the multiplicity of each irreducible $H-$factor of $\\pi$ restricted to $H$ and push forward to $\\mathfrak h^\\star$ of the Liouville measure for $\\Omega.$ This generalizes work of Duflo-Heckman-Vergne.
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html