Lie群論・表現論セミナー
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 小林俊行 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html |
2008年05月13日(火)
16:30-18:00 数理科学研究科棟(駒場) 126号室
加藤晃史 氏 (東京大学)
On endomorphisms of the Weyl algebra
http://akagi.ms.u-tokyo.ac.jp/seminar.html
加藤晃史 氏 (東京大学)
On endomorphisms of the Weyl algebra
[ 講演概要 ]
Noncommutative geometry has revived the interest in the Weyl algebras, which are basic building blocks of quantum field theories.
The Weyl algebra $A_n(\\C)$ is an associative algebra over $\\C$ generated by $p_i, q_i$ ($i=1,\\cdots,n$) with relations $[p_i, q_j]=\\delta_{ij}$. Every endomorphism of $A_n$ is injective since $A_n$ is simple.
Dixmier (1968) initiated a systematic study of the Weyl algebra $A_1$ and posed the following problem: Is every endomorphism of $A_1$ an automorphism?
We give an affirmative answer to this conjecture.
[ 参考URL ]Noncommutative geometry has revived the interest in the Weyl algebras, which are basic building blocks of quantum field theories.
The Weyl algebra $A_n(\\C)$ is an associative algebra over $\\C$ generated by $p_i, q_i$ ($i=1,\\cdots,n$) with relations $[p_i, q_j]=\\delta_{ij}$. Every endomorphism of $A_n$ is injective since $A_n$ is simple.
Dixmier (1968) initiated a systematic study of the Weyl algebra $A_1$ and posed the following problem: Is every endomorphism of $A_1$ an automorphism?
We give an affirmative answer to this conjecture.
http://akagi.ms.u-tokyo.ac.jp/seminar.html