トポロジー火曜セミナー
過去の記録 ~10/09|次回の予定|今後の予定 10/10~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2007年10月09日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
浅岡 正幸 氏 (京都大学大学院理学研究科)
Classification of codimension-one locally free actions of the affine group of the real line.
Tea: 16:00 - 16:30 コモンルーム
浅岡 正幸 氏 (京都大学大学院理学研究科)
Classification of codimension-one locally free actions of the affine group of the real line.
[ 講演概要 ]
By GA, we denote the group of affine and orientation-preserving transformations
of the real line. In this talk, I will report on classification of locally free action of
GA on closed three manifolds, which I obtained recently. In 1979, E.Ghys proved
that if such an action preserves a volume, then it is smoothly conjugate to a homogeneous action. However, it was unknown whether non-homogeneous action exists. As a consequence of the classification, we will see that the unit tangent bundle of a closed surface of higher genus admits a finite-parameter family of
non-homogeneous actions.
By GA, we denote the group of affine and orientation-preserving transformations
of the real line. In this talk, I will report on classification of locally free action of
GA on closed three manifolds, which I obtained recently. In 1979, E.Ghys proved
that if such an action preserves a volume, then it is smoothly conjugate to a homogeneous action. However, it was unknown whether non-homogeneous action exists. As a consequence of the classification, we will see that the unit tangent bundle of a closed surface of higher genus admits a finite-parameter family of
non-homogeneous actions.