Tuesday Seminar on Topology
Seminar information archive ~10/03|Next seminar|Future seminars 10/04~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2007/10/09
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
浅岡 正幸 (京都大学大学院理学研究科)
Classification of codimension-one locally free actions of the affine group of the real line.
浅岡 正幸 (京都大学大学院理学研究科)
Classification of codimension-one locally free actions of the affine group of the real line.
[ Abstract ]
By GA, we denote the group of affine and orientation-preserving transformations
of the real line. In this talk, I will report on classification of locally free action of
GA on closed three manifolds, which I obtained recently. In 1979, E.Ghys proved
that if such an action preserves a volume, then it is smoothly conjugate to a homogeneous action. However, it was unknown whether non-homogeneous action exists. As a consequence of the classification, we will see that the unit tangent bundle of a closed surface of higher genus admits a finite-parameter family of
non-homogeneous actions.
By GA, we denote the group of affine and orientation-preserving transformations
of the real line. In this talk, I will report on classification of locally free action of
GA on closed three manifolds, which I obtained recently. In 1979, E.Ghys proved
that if such an action preserves a volume, then it is smoothly conjugate to a homogeneous action. However, it was unknown whether non-homogeneous action exists. As a consequence of the classification, we will see that the unit tangent bundle of a closed surface of higher genus admits a finite-parameter family of
non-homogeneous actions.