複素解析幾何セミナー

過去の記録 ~05/21次回の予定今後の予定 05/22~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴, 細野 元気

今後の予定

2018年05月28日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
中村聡 氏 (東北大学)
A generalization of K\”ahler Einstein metrics for Fano manifolds with non-vanishing Futaki invariant (JAPANESE)
[ 講演概要 ]
The existence problem of K\"ahler Einstein metrics for Fano manifolds was one of the central problems in K\"ahler Geometry. The vanishing of the Futaki invariant is known as an obstruction to the existence of K\"ahler Einstein metrics. Generalized K\"ahler Einstein metrics (GKE for short), introduced by Mabuchi in 2000, is a generalization of K\"ahler Einstein metrics for Fano manifolds with non-vanishing Futaki invariant. In this talk, we give the followings:
(i) The positivity for the Hessian of the Ricci Calabi functional which characterizes GKE as its critical points, and its application.
(ii) A criterion for the existence of GKE on toric Fano manifolds from view points of an algebraic stability and an analytic stability.

2018年06月04日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
野口潤次郎 氏 (東京大学)
Picardの大定理とManin-Mumford予想(Raynaudの定理) (JAPANESE)
[ 講演概要 ]
Manin-Mumford予想とは,関数体上のMordell予想が解決された後の1960年代後半にManinとMumfordにより(独立に)提示されたもので1983年にM. Raynaudにより『代数体上定義されたアーベル多様体の代数的部分空間$X$内のトージョン点集合$X_{tor}$のZ-閉包は部分群の平行移動の有限和である』
という形で解決された.この結果は内容の深さからか多くの研究者の関心を呼び、その後,一般化や種々の別証明がM. Hindry ('88),..., E. Hrushovski ('96),..., Pila-Zannier ('08)等により与えられてきた.最後のPila-Zannierがここでの話に関係する.

本講演では,準アーベル多様体に対し拡張されたPicardの大定理(N. '81)を用いて上記Manin-Mumford予想(Raynaudの定理)を準アーベル多様体の場合に証明する.

Nevanlinna理論とDiophantus幾何については,これまで類似の観点からの議論・成果が多くあったが,今回の結果は証明レベルでの直接的な関係で,この様な関係を講演者は永く求めてきた(missing link).その意味で今般の知見は新しいもものであると思う.両理論の間をモデル理論の``o-minimal sets 理論''が取り持つ点も興味深いところと思う.

2018年07月02日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松崎克彦 氏 (早稲田大学)
(JAPANESE)

2018年07月09日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Casey Kelleher 氏 (Princeton University)
(ENGLISH)