東京無限可積分系セミナー

過去の記録 ~09/22次回の予定今後の予定 09/23~

開催情報 土曜日 13:30~16:00 数理科学研究科棟(駒場) 117号室
担当者 神保道夫、国場敦夫、山田裕二、武部尚志、高木太一郎、白石潤一
セミナーURL http://www.ms.u-tokyo.ac.jp/~takebe/iat/index-j.html

2018年09月25日(火)

16:00-17:00   数理科学研究科棟(駒場) 002号室
中園信孝 氏 (青山学院大学 理工学部物理・数理学科)
Classification of quad-equations on a cuboctahedron (JAPANESE)
[ 講演概要 ]
Adelr-Bobenko-Suris(2003,2009)とBoll(2011)による立方体上のConsistencyを用いた4点の関係式(quad-equation)の分類が知られている.この立方体上のConsistencyにより可積分な2次元偏差分方程式(ABS方程式)が定義できる.ABS方程式の代表的なものとして,modified KdV equationの離散版であるlattice modified KdV equationなどがある.また,ABS方程式はその構成方法からラックス形式やベックルンド変換などの可積分な性質を持ち,さらに,相似簡約による離散および微分のパンルヴェ方程式への簡約があることも知られている.本講演では,立法八面体上のConsistencyによるquad-equationの分類およびそのConsistencyにより定義される偏差分方程式と離散パンルヴェ方程式の関係について説明する.本研究は,Nalini Joshi氏(シドニー大学)との共同研究である.