複素解析幾何セミナー

過去の記録 ~05/21次回の予定今後の予定 05/22~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴, 細野 元気

2018年05月21日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
井上瑛二 氏 (東京大学)
Kähler-Ricci soliton, K-stability and moduli space of Fano
manifolds (JAPANESE)
[ 講演概要 ]
Kähler-Ricci soliton is a kind of canonical metrics on Fano
manifolds and is a natural generalization of Kähler-Einstein metric in
view of Kähler-Ricci flow.

In this talk, I will explain the following good geometric features of
Fano manifolds admitting Kähler-Ricci solitons:
1. Volume minimization, reductivity and uniqueness results established
by Tian&Zhu.
2. Relation to algebraic (modified) K-stability estabilished by Berman&
Witt-Niström and Datar&Székelyhidi.
3. Moment map picture for Kähler-Ricci soliton (‘real side’)
4. Moduli stack (‘virtual side’) and moduli space of them

A result in 1 is indispensable for the formulation in 3 and 4, and
explains why we should consider solitons, beyond Einstein metrics.
I also show an essential idea in the construction of the moduli space of
Fano manifolds admitting Kähler-Ricci solitons and give some remarks on
technical key point.