トポロジー火曜セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2017年03月10日(金)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00, Lie群論・表現論セミナーと合同
Lizhen Ji 氏 (University of Michigan)
Satake compactifications and metric Schottky problems (ENGLISH)
Tea: Common Room 16:30-17:00, Lie群論・表現論セミナーと合同
Lizhen Ji 氏 (University of Michigan)
Satake compactifications and metric Schottky problems (ENGLISH)
[ 講演概要 ]
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:
(1) Moduli spaces M_g of compact Riemann surfaces of genus g>1,
(2) Arithmetic locally symmetric spaces Γ \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.
There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map J: M_g --> A_g. In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:
(1) Moduli spaces M_g of compact Riemann surfaces of genus g>1,
(2) Arithmetic locally symmetric spaces Γ \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.
There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map J: M_g --> A_g. In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.