トポロジー火曜セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2017年01月24日(火)
18:00-19:00 数理科学研究科棟(駒場) 056号室
川口 徳昭 氏 (東京大学大学院数理科学研究科)
Quantitative shadowing property, shadowable points, and local properties of topological dynamical systems (JAPANESE)
川口 徳昭 氏 (東京大学大学院数理科学研究科)
Quantitative shadowing property, shadowable points, and local properties of topological dynamical systems (JAPANESE)
[ 講演概要 ]
Shadowing property has been one of the key notions in topological hyperbolic dynamics, which is also common since C^0-generic homeomorphisms on a smooth closed manifold satisfy the property for instance. In this talk, the shadowing property in relation to other chaotic or non-chaotic properties of dynamical systems (entropy, sensitivity, equicontinuity, etc.) is discussed. Also, we introduce an idea of localizing and quantifying the shadowing property following the recent work of Morales, and present some of its consequences. The idea is shown to be effective for the description of local properties of dynamical systems.
Shadowing property has been one of the key notions in topological hyperbolic dynamics, which is also common since C^0-generic homeomorphisms on a smooth closed manifold satisfy the property for instance. In this talk, the shadowing property in relation to other chaotic or non-chaotic properties of dynamical systems (entropy, sensitivity, equicontinuity, etc.) is discussed. Also, we introduce an idea of localizing and quantifying the shadowing property following the recent work of Morales, and present some of its consequences. The idea is shown to be effective for the description of local properties of dynamical systems.