東京確率論セミナー
過去の記録 ~12/26|次回の予定|今後の予定 12/27~
| 開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
|---|---|
| 担当者 | 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学) |
| セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/ |
2025年11月10日(月)
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
濱口 雄史 氏 (京都大学)
確率ヴォルテラ方程式のマルコフリフトの弱エルゴード性
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
濱口 雄史 氏 (京都大学)
確率ヴォルテラ方程式のマルコフリフトの弱エルゴード性
[ 講演概要 ]
確率ヴォルテラ方程式の解は一般に非マルコフかつ非セミマルチンゲールであるような(有限次元)確率過程であるが、無限次元空間への持ち上げを考えることで、あるヒルベルト空間上のマルコフ過程(マルコフリフト)が得られる。
また、元の確率ヴォルテラ方程式の解は、このマルコフリフトのある種の射影として復元できる。
本研究の目的は、マルコフリフトの長時間漸近挙動を調べ、元の確率ヴォルテラ方程式の解に関する極限定理を得ることである。
そのうえで解決すべき難点は、マルコフリフトが満たす確率発展方程式が退化型であること、すなわち状態空間は無限次元であるが、ノイズを駆動するブラウン運動は有限次元であるという点である。
前回の東京確率論セミナー(2023年6月19日)では、マルコフリフトの漸近的対数ハルナック不等式、特に不変確率測度の一意性に関する結果を報告した。
本講演では、マルコフリフトの不変確率測度の存在性と指数型弱エルゴ―ド評価について、現在までに得られた研究成果を報告する。
確率ヴォルテラ方程式の解は一般に非マルコフかつ非セミマルチンゲールであるような(有限次元)確率過程であるが、無限次元空間への持ち上げを考えることで、あるヒルベルト空間上のマルコフ過程(マルコフリフト)が得られる。
また、元の確率ヴォルテラ方程式の解は、このマルコフリフトのある種の射影として復元できる。
本研究の目的は、マルコフリフトの長時間漸近挙動を調べ、元の確率ヴォルテラ方程式の解に関する極限定理を得ることである。
そのうえで解決すべき難点は、マルコフリフトが満たす確率発展方程式が退化型であること、すなわち状態空間は無限次元であるが、ノイズを駆動するブラウン運動は有限次元であるという点である。
前回の東京確率論セミナー(2023年6月19日)では、マルコフリフトの漸近的対数ハルナック不等式、特に不変確率測度の一意性に関する結果を報告した。
本講演では、マルコフリフトの不変確率測度の存在性と指数型弱エルゴ―ド評価について、現在までに得られた研究成果を報告する。


本文印刷
全画面プリント







