東京確率論セミナー
過去の記録 ~04/30|次回の予定|今後の予定 05/01~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/ |
2025年05月07日(水)
10:00-11:30 数理科学研究科棟(駒場) 126号室
講演は水曜日の午前中です。今日はTea Time はありません。
Ivan Corwin 氏 (Columbia University)
How Yang-Baxter unravels Kardar-Parisi-Zhang.
講演は水曜日の午前中です。今日はTea Time はありません。
Ivan Corwin 氏 (Columbia University)
How Yang-Baxter unravels Kardar-Parisi-Zhang.
[ 講演概要 ]
Over the past few decades, physicists and then mathematicians have sought to uncover the (conjecturally) universal long time and large space scaling limit for the so-called Kardar-Parisi-Zhang (KPZ) class of stochastically growing interfaces in (1+1)-dimensions. Progress has been marked by several breakthroughs, starting with the identification of a few free-fermionic integrable models in this class and their single-point limiting distributions, widening the field to include non-free-fermionic integrable representatives, evaluating their asymptotics distributions at various levels of generality, constructing the conjectural full space-time scaling limit, known as the directed landscape, and checking convergence to it for a few of the free-fermion representatives.
In this talk, I will describe a method that should prove convergence for all known integrable representatives of the KPZ class to this universal scaling limit. The method has been fully realized for the Asymmetric Simple Exclusion Process and the Stochastic Six Vertex Model. It relies on the Yang-Baxter equation as its only input and unravels the rich complexity of the KPZ class and its asymptotics from first principles. This is based on three works involving Amol Aggarwal, Alexei Borodin, Milind Hegde, Jiaoyang Huang and me.
Over the past few decades, physicists and then mathematicians have sought to uncover the (conjecturally) universal long time and large space scaling limit for the so-called Kardar-Parisi-Zhang (KPZ) class of stochastically growing interfaces in (1+1)-dimensions. Progress has been marked by several breakthroughs, starting with the identification of a few free-fermionic integrable models in this class and their single-point limiting distributions, widening the field to include non-free-fermionic integrable representatives, evaluating their asymptotics distributions at various levels of generality, constructing the conjectural full space-time scaling limit, known as the directed landscape, and checking convergence to it for a few of the free-fermion representatives.
In this talk, I will describe a method that should prove convergence for all known integrable representatives of the KPZ class to this universal scaling limit. The method has been fully realized for the Asymmetric Simple Exclusion Process and the Stochastic Six Vertex Model. It relies on the Yang-Baxter equation as its only input and unravels the rich complexity of the KPZ class and its asymptotics from first principles. This is based on three works involving Amol Aggarwal, Alexei Borodin, Milind Hegde, Jiaoyang Huang and me.