東京確率論セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/ |
2024年09月30日(月)
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
梶野直孝 氏 (京都大学)
Heat kernel estimates for boundary traces of reflected diffusions on uniform domains
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
梶野直孝 氏 (京都大学)
Heat kernel estimates for boundary traces of reflected diffusions on uniform domains
[ 講演概要 ]
This talk is aimed at presenting the results of the speaker's recent joint work (arXiv:2312.08546) with Mathav Murugan (University of British Columbia) on the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of independent interest such as sharp two-sided estimates and the volume doubling property of the harmonic measure, the existence of a continuous extension of the Na\"im kernel to the topological boundary, and the Doob--Na\"im formula identifying the Dirichlet form of the boundary trace process as the pure-jump Dirichlet form whose jump kernel with respect to the harmonic measure is exactly (the continuous extension of) the Na\"im kernel.
This talk is aimed at presenting the results of the speaker's recent joint work (arXiv:2312.08546) with Mathav Murugan (University of British Columbia) on the boundary trace processes of reflected diffusions on uniform domains. We obtain stable-like heat kernel estimates for such a boundary trace process when the diffusion on the underlying ambient space satisfies sub-Gaussian heat kernel estimates. Our arguments rely on new results of independent interest such as sharp two-sided estimates and the volume doubling property of the harmonic measure, the existence of a continuous extension of the Na\"im kernel to the topological boundary, and the Doob--Na\"im formula identifying the Dirichlet form of the boundary trace process as the pure-jump Dirichlet form whose jump kernel with respect to the harmonic measure is exactly (the continuous extension of) the Na\"im kernel.