代数学コロキウム
過去の記録 ~05/09|次回の予定|今後の予定 05/10~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2016年04月13日(水)
17:30-18:30 数理科学研究科棟(駒場) 056号室
玉川安騎男 氏 (京都大学数理解析研究所)
Semisimplicity of geometric monodromy on etale cohomology (joint work with Anna Cadoret and Chun Yin Hui)
(English)
玉川安騎男 氏 (京都大学数理解析研究所)
Semisimplicity of geometric monodromy on etale cohomology (joint work with Anna Cadoret and Chun Yin Hui)
(English)
[ 講演概要 ]
Let K be a function field over an algebraically closed field of characteritic p \geq 0, X a proper smooth K-scheme, and l a prime distinct from p. Deligne proved that the Q_l-coefficient etale cohomology groups of the geometric fiber of X --> K are always semisimple as G_K-modules. In this talk, we consider a similar problem for the F_l-coefficient etale cohomology groups. Among other things, we show that if p=0 (resp. in general), they are semisimple for all but finitely many l's (resp. for all l's in a set of density 1).
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)
Let K be a function field over an algebraically closed field of characteritic p \geq 0, X a proper smooth K-scheme, and l a prime distinct from p. Deligne proved that the Q_l-coefficient etale cohomology groups of the geometric fiber of X --> K are always semisimple as G_K-modules. In this talk, we consider a similar problem for the F_l-coefficient etale cohomology groups. Among other things, we show that if p=0 (resp. in general), they are semisimple for all but finitely many l's (resp. for all l's in a set of density 1).
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)