Number Theory Seminar

Seminar information archive ~10/09Next seminarFuture seminars 10/10~

Date, time & place Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Shane Kelly

2016/04/13

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Akio Tamagawa (RIMS, Kyoto University)
Semisimplicity of geometric monodromy on etale cohomology (joint work with Anna Cadoret and Chun Yin Hui)

(English)
[ Abstract ]
Let K be a function field over an algebraically closed field of characteritic p \geq 0, X a proper smooth K-scheme, and l a prime distinct from p. Deligne proved that the Q_l-coefficient etale cohomology groups of the geometric fiber of X --> K are always semisimple as G_K-modules. In this talk, we consider a similar problem for the F_l-coefficient etale cohomology groups. Among other things, we show that if p=0 (resp. in general), they are semisimple for all but finitely many l's (resp. for all l's in a set of density 1).