数値解析セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 齊藤宣一、柏原崇人 |
セミナーURL | https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/ |
2020年06月23日(火)
16:30-18:00 オンライン開催
佐藤峻 氏 (東京大学大学院情報理工学系研究科)
2次の保存量をもつ常微分方程式に対する線形かつ高精度な構造保存数値解法 (Japanese)
https://forms.gle/hvvvFLAhH1314UQK8
佐藤峻 氏 (東京大学大学院情報理工学系研究科)
2次の保存量をもつ常微分方程式に対する線形かつ高精度な構造保存数値解法 (Japanese)
[ 講演概要 ]
様々な現象のモデルとして現れる常微分方程式や発展偏微分方程式はしばしば保存量をもつ. このような系に対して,保存量を尊重した構造保存数値解法は安定性などにおいて優れることが知られており, 高精度なスキームの構成法も含めて整備されているが,一般に陰的非線形になってしまうという問題も抱えている. そこで,本研究では,保存量が2次関数で表される場合に限れば,陰的線形かつ高精度な構造保存数値解法が構成できることを示した. 2次関数で表される保存量 (2次の保存量) は,KdV方程式を含む各種の微分方程式で自然に現れるだけでなく, 近年盛んに研究されているSAV (Salar Auxiliary Variable) 法のような元の問題の変形を伴う手法においても現れるため, 提案手法は幅広い方程式に適用可能である. 講演では提案手法の構成法と精度を示す定理を紹介し,数値実験結果も報告する.
この研究は宮武勇登氏 (大阪大学) とJohn C. Butcher氏 (The University of Auckland) との共同研究である.
[ 参考URL ]様々な現象のモデルとして現れる常微分方程式や発展偏微分方程式はしばしば保存量をもつ. このような系に対して,保存量を尊重した構造保存数値解法は安定性などにおいて優れることが知られており, 高精度なスキームの構成法も含めて整備されているが,一般に陰的非線形になってしまうという問題も抱えている. そこで,本研究では,保存量が2次関数で表される場合に限れば,陰的線形かつ高精度な構造保存数値解法が構成できることを示した. 2次関数で表される保存量 (2次の保存量) は,KdV方程式を含む各種の微分方程式で自然に現れるだけでなく, 近年盛んに研究されているSAV (Salar Auxiliary Variable) 法のような元の問題の変形を伴う手法においても現れるため, 提案手法は幅広い方程式に適用可能である. 講演では提案手法の構成法と精度を示す定理を紹介し,数値実験結果も報告する.
この研究は宮武勇登氏 (大阪大学) とJohn C. Butcher氏 (The University of Auckland) との共同研究である.
https://forms.gle/hvvvFLAhH1314UQK8