数値解析セミナー

過去の記録 ~02/27次回の予定今後の予定 02/28~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室
担当者 齊藤宣一、柏原崇人
セミナーURL https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/

次回の予定

2024年03月13日(水)

16:30-17:30   オンライン開催
David Sommer 氏 (Weierstrass Institute for Applied Analysis and Stochastics)
Approximating Langevin Monte Carlo with ResNet-like neural network architectures (English)
[ 講演概要 ]
We analyse a method to sample from a given target distribution by constructing a neural network which maps samples from a simple reference distribution, e.g. the standard normal, to samples from the target distribution. For this, we propose using a neural network architecture inspired by the Langevin Monte Carlo (LMC) algorithm. Based on LMC perturbation results, approximation rates of the proposed architecture for smooth, log-concave target distributions measured in the Wasserstein-2 distance are shown. The analysis heavily relies on the notion of sub-Gaussianity of the intermediate measures of the perturbed LMC process. In particular, we derive bounds on the growth of the intermediate variance proxies under different assumptions on the perturbations. Moreover, we propose an architecture similar to deep residual neural networks (ResNets) and derive expressivity results for approximating the sample to target distribution map.
[ 参考URL ]
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/