数値解析セミナー
過去の記録 ~11/12|次回の予定|今後の予定 11/13~
| 開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室 |
|---|---|
| 担当者 | 齊藤宣一、柏原崇人 |
| セミナーURL | https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/ |
今後の予定
2025年11月18日(火)
16:30-18:00 数理科学研究科棟(駒場) 002号室
周冠宇 氏 (University of Electronic Science and Technology of China)
The mixed methods for the variational inequalities
(English)
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
周冠宇 氏 (University of Electronic Science and Technology of China)
The mixed methods for the variational inequalities
(English)
[ 講演概要 ]
We propose new mixed formulations for variational inequalities arising from contact problems, aimed at improving the approximation of the stress tensor and displacement in numerical simulations. We establish the well-posedness of these mixed variational inequalities. Furthermore, we will present their finite element analysis.
[ 参考URL ]We propose new mixed formulations for variational inequalities arising from contact problems, aimed at improving the approximation of the stress tensor and displacement in numerical simulations. We establish the well-posedness of these mixed variational inequalities. Furthermore, we will present their finite element analysis.
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
2025年11月25日(火)
16:30-18:00 数理科学研究科棟(駒場) 002号室
Lars Diening 氏 (Bielefeld University)
Sobolev stability of the $L^2$-projection (English)
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
Lars Diening 氏 (Bielefeld University)
Sobolev stability of the $L^2$-projection (English)
[ 講演概要 ]
We prove the $W^{1,2}$-stability of the $L^2$-projection on Lagrange elements for adaptive meshes and arbitrary polynomial degree. This property is especially important for the numerical analysis of parabolic problems. We will explain that the stability of the projection is connected to the grading constants of the underlying adaptive refinement routine. For arbitrary dimensions, we show that the bisection algorithm of Maubach and Traxler produces meshes with a grading constant 2. This implies $W^{1,2}$-stability of the $L^2$-projection up to dimension six.
[ 参考URL ]We prove the $W^{1,2}$-stability of the $L^2$-projection on Lagrange elements for adaptive meshes and arbitrary polynomial degree. This property is especially important for the numerical analysis of parabolic problems. We will explain that the stability of the projection is connected to the grading constants of the underlying adaptive refinement routine. For arbitrary dimensions, we show that the bisection algorithm of Maubach and Traxler produces meshes with a grading constant 2. This implies $W^{1,2}$-stability of the $L^2$-projection up to dimension six.
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/


本文印刷
全画面プリント







