東京幾何セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
担当者 | 二木 昭人(東京工業大学), 今野 宏 |
---|---|
セミナーURL | http://faculty.ms.u-tokyo.ac.jp/~geometry/kika.html |
備考 | 場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。 詳細については、上記セミナーURLよりご確認下さい。 「今後の予定」欄には、東工大で行われるセミナーは表示されないのでご注意下さい。 |
2006年10月23日(月)
14:40-18:00 数理科学研究科棟(駒場) 056号室
Naichung Conan Leung 氏 (Chinese University of Hong Kong) 14:40-16:10
Toric geometry and Mirror Symmetry
Balance point and stability of vector bundles over a projective manifold
Naichung Conan Leung 氏 (Chinese University of Hong Kong) 14:40-16:10
Toric geometry and Mirror Symmetry
[ 講演概要 ]
We first review the geometry of toric varieties. Then we will explain the SYZ mirror symmetry conjecture and how toric geometry plays an important role here.
Xiaowei Wang 氏 (Chinese University of Hong Kong) 16:30-18:00We first review the geometry of toric varieties. Then we will explain the SYZ mirror symmetry conjecture and how toric geometry plays an important role here.
Balance point and stability of vector bundles over a projective manifold
[ 講演概要 ]
In this talk, we will start with some basic theory of GIT and symplectic quotient, then introduce various kind of stability of a holomorphic vector bundle over a projective manifold. As an application of the general theory, we will answer a question raised by Donaldson by showing that GIT stable vector bundle produces a sequence of balanced embedding of the underlying projective manifold to the Grassmanian.
In this talk, we will start with some basic theory of GIT and symplectic quotient, then introduce various kind of stability of a holomorphic vector bundle over a projective manifold. As an application of the general theory, we will answer a question raised by Donaldson by showing that GIT stable vector bundle produces a sequence of balanced embedding of the underlying projective manifold to the Grassmanian.