複素解析幾何セミナー
過去の記録 ~05/21|次回の予定|今後の予定 05/22~
開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
---|---|
担当者 | 平地 健吾, 高山 茂晴 |
次回の予定
2025年05月26日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
松村 慎一 氏 (東北大学)
Fundamental groups of compact Kahler manifolds with semi-positive holomorphic sectional curvature (Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
松村 慎一 氏 (東北大学)
Fundamental groups of compact Kahler manifolds with semi-positive holomorphic sectional curvature (Japanese)
[ 講演概要 ]
この講演では, 非負の正則断面曲率をもつコンパクトKahler多様体の構造を論じ,そのような多様体がトーラスの有限エタール商への局所自明な有理連結射を持つことを説明する. この構造定理は,射影多様体に対して既に確立されていた結果をコンパクトKahler多様体へ拡張するものである. 証明の要所は,適切な意味で平坦な接ベクトルによって生成される葉層を解析し,Campanaによって導入された特殊型多様体に着目して,位相基本群が本質的にアーベルであることを示す点にある.
[ 参考URL ]この講演では, 非負の正則断面曲率をもつコンパクトKahler多様体の構造を論じ,そのような多様体がトーラスの有限エタール商への局所自明な有理連結射を持つことを説明する. この構造定理は,射影多様体に対して既に確立されていた結果をコンパクトKahler多様体へ拡張するものである. 証明の要所は,適切な意味で平坦な接ベクトルによって生成される葉層を解析し,Campanaによって導入された特殊型多様体に着目して,位相基本群が本質的にアーベルであることを示す点にある.
https://forms.gle/gTP8qNZwPyQyxjTj8