東京名古屋代数セミナー

過去の記録 ~05/01次回の予定今後の予定 05/02~

担当者 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、淺井 聡太、高橋 亮
セミナーURL http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

過去の記録

2022年06月29日(水)

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
Nicholas Williams 氏 (東京大学)
Cyclic polytopes and higher Auslander--Reiten theory 2 (English)
[ 講演概要 ]
This continues part 1. In the second talk, we focus on higher Auslander--Reiten theory. We survey the basic setting of this theory, starting with d-cluster-tilting subcategories of module categories. We then move on to d-cluster-tilting subcategories of derived categories in the case of d-representation-finite d-hereditary algebras. We explain how one can construct (d + 2)-angulated cluster categories for such algebras, generalising classical cluster categories. We finally consider the d-almost positive category, which is the higher generalisation of the category of two-term complexes. Throughout, we illustrate the results using the higher Auslander algebras of type A, and explain how the different categories can be interpreted combinatorially for these algebras.
[ 講演参考URL ]
https://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月22日(水)

17:00-18:30   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
Martin Kalck 氏 (Freiburg University)
Update on singular equivalences between commutative rings (English)
[ 講演概要 ]
We will start with an introduction to singularity categories, which were first studied by Buchweitz and later rediscovered by Orlov. Then we will explain what is known about triangle equivalences between singularity categories of commutative rings, recalling results of Knörrer, D. Yang (based on our joint works on relative singularity categories. This result also follows from work of Kawamata and was generalized in a joint work with Karmazyn) and a new equivalence obtained in arXiv:2103.06584.

In the remainder of the talk, we will focus on the case of Gorenstein isolated singularities and especially hypersurfaces, where we give a complete description of quasi-equivalence classes of dg enhancements of singularity categories, answering a question of Keller & Shinder. This is based on arXiv:2108.03292.
[ 講演参考URL ]
https://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月15日(水)

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
Nicholas Williams 氏 (東京大学)
Cyclic polytopes and higher Auslander--Reiten theory 1 (English)
[ 講演概要 ]
In this series of three talks, we expand upon the previous talk given at the seminar and study the relationship between cyclic polytopes and higher Auslander--Reiten theory in more detail.
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNA/2021/Williams-Cyclic_polytopes_and_higher_AR.pdf

In the first talk, we focus on cyclic polytopes. We survey important properties of cyclic polytopes, such as different ways to construct them, the Upper Bound Theorem, and their Ramsey-theoretic properties. We then move on to triangulations of cyclic polytopes. We give efficient combinatorial descriptions of triangulations of even-dimensional and odd-dimensional cyclic polytopes, which we will use in subsequent talks. We finally define the higher Stasheff--Tamari orders on triangulations of cyclic polytopes. We give important results on the orders, including Rambau's Theorem, and the equality of the two orders.
[ 講演参考URL ]
https://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月08日(水)

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
吉永 正彦 氏 (大阪大学)
超平面配置の特性準多項式 II (Japanese)
[ 講演概要 ]
n ベクトル空間内の (n-1) 次元(アフィン)部分空間のいくつかの集まりを超平面配置という。ルート系、コクセター群、配置空間など様々な文脈で自然に表れる対象である。超平面配置の重要な不変量の一つとして「特性多項式」が挙げられる。特性多項式は(実配置の)部屋数、(複素配置の)補集合のポアンカレ多項式、(有限体上の)点の数など様々な情報を持っている。本講演では、アフィンルート系のある種の有限部分配置を主な対象に、特性多項式の性質や計算方法を、特に 2007年に Kamiya-Takemura-Terao により導入された「特性準多項式」に焦点をあてて紹介する。特性準多項式は特性多項式の精密化であるだけでなく、当初から多面体のEhrhart理論(格子点の数え上げ理論)との密接な関係が示唆されていた。特性多項式よりは複雑で扱いにくい側面もあるが、その複雑さの中に、代数的トーラス内のトーラス配置の位相幾何的情報や多面体の対称性に関する情報が見えてくるという最近の研究を紹介したい。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月01日(水)

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
吉永 正彦 氏 (大阪大学)
超平面配置の特性準多項式 I (Japanese)
[ 講演概要 ]
n ベクトル空間内の (n-1) 次元(アフィン)部分空間のいくつかの集まりを超平面配置という。ルート系、コクセター群、配置空間など様々な文脈で自然に表れる対象である。超平面配置の重要な不変量の一つとして「特性多項式」が挙げられる。特性多項式は(実配置の)部屋数、(複素配置の)補集合のポアンカレ多項式、(有限体上の)点の数など様々な情報を持っている。本講演では、アフィンルート系のある種の有限部分配置を主な対象に、特性多項式の性質や計算方法を、特に 2007年に Kamiya-Takemura-Terao により導入された「特性準多項式」に焦点をあてて紹介する。特性準多項式は特性多項式の精密化であるだけでなく、当初から多面体のEhrhart理論(格子点の数え上げ理論)との密接な関係が示唆されていた。特性多項式よりは複雑で扱いにくい側面もあるが、その複雑さの中に、代数的トーラス内のトーラス配置の位相幾何的情報や多面体の対称性に関する情報が見えてくるという最近の研究を紹介したい。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年04月13日(水)

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
木村 雄太 氏 (大阪公立大学)
Tilting ideals of deformed preprojective algebras
[ 講演概要 ]
Let $K$ be a field and $Q$ a finite quiver. For a weight $\lambda \in K^{|Q_0|}$, the deformed preprojective algebra $\Pi^{\lambda}$ was introduced by Crawley-Boevey and Holland to study deformations of Kleinian singularities. If $\lambda = 0$, then $\Pi^{0}$ is the preprojective algebra introduced by Gelfand-Ponomarev, and appears many areas of mathematics. Among interesting properties of $\Pi^{0}$, the classification of tilting ideals of $\Pi^{0}$, shown by Buan-Iyama-Reiten-Scott, is fundamental and important. They constructed a bijection between the set of tilting ideals of $\Pi^{0}$ and the Coxeter group $W_Q$ of $Q$.

In this talk, when $Q$ is non-Dynkin, we see that $\Pi^{\lambda}$ is a $2$-Calabi-Yau algebra, and show that there exists a bijection between tilting ideals and a Coxeter group. However $W_Q$ does not appear, since $\Pi^{\lambda}$ is not necessary basic. Instead of $W_Q$, we consider the Ext-quiver of rigid simple modules, and use its Coxeter group. When $Q$ is an extended Dynkin quiver, we see that the Ext-quiver is finite and this has an information of singularities of a representation space of semisimple modules.
This is joint work with William Crawley-Boevey.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年03月11日(金)

13:00-14:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
越谷 重夫 氏 (千葉大学)
Modular representation theory of finite groups – local versus global II (English)
[ 講演概要 ]
We are going to talk about representation theory of finite groups. In the 1st part it will be on "Equivalences of categories ” showing up for block theory in modular representation theory, and it should be kind of introductory lecture/talk. So the audience is supposed to have knowledge only of definitions of groups, rings, fields, modules, and so on. In the 2nd part we will discuss kind of local—global conjectures in modular representation theory of finite groups, that originally and essentially are due to Richard Brauer (1901–77).
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年03月09日(水)

13:00-14:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
越谷 重夫 氏 (千葉大学)
Modular representation theory of finite groups – local versus global I (English)
[ 講演概要 ]
We are going to talk about representation theory of finite groups. In the 1st part it will be on "Equivalences of categories ” showing up for block theory in modular representation theory, and it should be kind of introductory lecture/talk. So the audience is supposed to have knowledge only of definitions of groups, rings, fields, modules, and so on. In the 2nd part we will discuss kind of local—global conjectures in modular representation theory of finite groups, that originally and essentially are due to Richard Brauer (1901–77).
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年01月21日(金)

16:45-18:15   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
榎本 悠久 氏 (大阪府立大学)
Exact-categorical properties of subcategories of abelian categories 2 (Japanese)
[ 講演概要 ]
Quillen's exact category is a powerful framework for studying extension-closed subcategories of abelian categories, and provides many interesting questions on such subcategories.
In the first talk, I will explain the basics of some properties and invariants of exact categories (e.g. the Jordan-Holder property, simple objects, and Grothendieck monoid).
In the second talk, I will give some results and questions about particular classes of exact categories arising in the representation theory of algebras (e.g. torsion(-free) classes over path algebras and preprojective algebras).
If time permits, I will discuss questions of whether these results can be generalized to extriangulated categories (extension-closed subcategories of triangulated categories).
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年01月18日(火)

15:00-16:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
榎本 悠久 氏 (大阪府立大学)
Exact-categorical properties of subcategories of abelian categories 1 (Japanese)
[ 講演概要 ]
Quillen's exact category is a powerful framework for studying extension-closed subcategories of abelian categories, and provides many interesting questions on such subcategories.
In the first talk, I will explain the basics of some properties and invariants of exact categories (e.g. the Jordan-Holder property, simple objects, and Grothendieck monoid).
In the second talk, I will give some results and questions about particular classes of exact categories arising in the representation theory of algebras (e.g. torsion(-free) classes over path algebras and preprojective algebras).
If time permits, I will discuss questions of whether these results can be generalized to extriangulated categories (extension-closed subcategories of triangulated categories).
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年12月16日(木)

16:45-18:15   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Nicholas Williams 氏 (University of Cologne)
Cyclic polytopes and higher Auslander-Reiten theory (English)
[ 講演概要 ]
Oppermann and Thomas show that tilting modules over Iyama’s higher Auslander algebras of type A are in bijection with triangulations of even-dimensional cyclic polytopes. Triangulations of cyclic polytopes are partially ordered in two natural ways known as the higher Stasheff-Tamari orders, which were introduced in the 1990s by Kapranov, Voevodsky, Edelman, and Reiner as higher-dimensional generalisations of the Tamari lattice. These two partial orders were conjectured to be equal in 1996 by Edelman and Reiner, and we prove that this conjecture is true. We further show how the higher Stasheff-Tamari orders correspond in even dimensions to natural orders on tilting modules which were studied by Riedtmann, Schofield, Happel, and Unger. This then allows us to complete the picture of Oppermann and Thomas by showing that triangulations of odd-dimensional cyclic polytopes correspond to equivalence classes of d-maximal green sequences, which we introduce as higher-dimensional analogues of Keller’s maximal green sequences. We show that the higher Stasheff-Tamari orders correspond to natural orders on equivalence classes of d-maximal green sequences, which relate to the no-gap conjecture of Brustle, Dupont, and Perotin. The equality of the higher Stasheff-Tamari orders then implies that these algebraic orders on tilting modules and d-maximal green sequences are equal. If time permits, we will also discuss some results on mutation of cluster-tilting objects and triangulations.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年11月19日(金)

17:00-18:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
小境 雄太 氏 (東京理科大学)
有限群のブロック上の$\tau$-傾理論 (Japanese)
[ 講演概要 ]
Adachi-Iyama-Reiten(2014)により導入された台$\tau$-傾加群は, 2項準傾複体や半煉瓦, 2項単純系といった, さまざまな表現論的に重要な対象と1対1で対応する。そのため, 近年では, 与えられた有限次元多元環に対して, それらの上での台$\tau$-傾加群や, それらに対応する対象たちの研究が盛んに行われている。本講演では, $k$を標数$p>0$の代数的閉体とし, 有限群$\tilde{G}$と, $\tilde{G}$の正規部分群$G$, 群環$kG$のブロック$B$, $B$を被覆する$k\tilde{G}$のブロック$\tilde{B}$に対して, より複雑な構造をもつ$\tilde{B}$上の台$\tau$-傾加群や2項準傾複体, 半煉瓦, 2項単純系が, $B$上のそれらから, 有限群の表現論的な道具を用いて得られることを説明する。さらに, 剰余群$\tilde{G}/G$が$p$-群のときには, $B$上の台$\tau$-傾加群全体の集合は, $\tilde{B}$上のそれと, 半順序集合として同型となることも説明する。
本講演は、東京理科大学の小塩遼太郎氏との共同研究に基づく。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年07月08日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
石橋 典 氏 (京都大学 数理解析研究所)
Sign-stable mutation loops and pseudo-Anosov mapping classes (Japanese)
[ 講演概要 ]
箙の変異ループは対応するクラスター代数およびクラスター多様体上の自己同型を誘導し、特にこれを繰り返し作用させることで離散力学系が定まる. 石橋-狩野 (Geom. Dedicata, 2021) では曲面上の写像類の擬Anosov性の類似として変異ループの符号安定性と呼ばれる一連の性質を導入し, 符号安定性のもとでクラスター多様体への作用の代数的エントロピーの計算などの応用を得た. 本講演では点付き曲面上の写像類から定まる変異ループについて, 擬Anosov性と種々の符号安定性との比較を行う. 本講演の内容は東北大学の狩野隼輔氏との共同研究に基づく.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年06月24日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
菊田 康平 氏 (中央大学)
Rank 2 free subgroups in autoequivalence groups of Calabi-Yau categories
[ 講演概要 ]
Via homological mirror symmetry, there is a relation between autoequivalence groups of derived categories of coherent sheaves on Calabi-Yau varieties, and the symplectic mapping class groups of symplectic manifolds.
In this talk, as an analogue of mapping class groups of closed oriented surfaces, we study autoequivalence groups of Calabi-Yau triangulated categories. In particular, we consider embeddings of rank 2 (non-commutative) free groups generated by spherical twists. It is interesting that the proof of main results is almost similar to that of corresponding results in the theory of mapping class groups.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年06月02日(水)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
村井 聡 氏 (早稲田大学)
An equivariant Hochster's formula for $S_n$-invariant monomial ideals (Japanese)
[ 講演概要 ]
組合せ可換環論の分野では、多項式環の単項式イデアルや二項式イデアルの代数的な情報と凸多面体や単体的複体の組合せ論的な情報の関連がよく研究される。イデアルの自由分解に関するHochsterの公式は、(squarefreeな)単項式イデアルの自由分解のベッチ数と単体的複体のホモロジーとの関係を与える公式で、組合せ可換代数の分野における基本的な結果の一つである。本講演では、$n$変数多項式環$S=K[x_1,\dots,x_n]$の単項式イデアル$I$が$n$次対称群の作用で固定されるときは、ベッチ数$\beta_{ij}(I)=\dim_K \mathrm{Tor}_i(I,K)_j$のみならず、$\mathrm{Tor}_i(I,K)_j$の表現の情報まで単体的複体のホモロジーを用いて計算できることを紹介する。

対称群の作用で固定される単項式イデアルの性質を調べた今回の研究結果は、無限変数多項式環上のイデアルで無限対称群の作用で固定されるイデアルにある種の有限生成性があること(Noetherianity up to symmetry)に関連する研究を動機としている。講演の前半ではこの問題の背景について簡単に話をし、後半に今回の結果とその応用について紹介したい。

本研究はClaudiu Raicuとの共同研究である。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年05月20日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
神田 遼 氏 (大阪市立大学)
This talk is based on joint work with Tsutomu Nakamura. For a module-finite algebra over a commutative noetherian ring, we give a complete description of flat cotorsion modules in terms of prime ideals of the algebra, as a generalization of Enochs' result for a commutative noetherian ring. As a consequence, we show that pointwise Matlis duality gives a bijective correspondence between the isoclasses of indecomposable flat cotorsion right modules and the isoclasses of indecomposable injective left modules. This correspondence is an explicit realization of Herzog's homeomorphism induced from elementary duality between Ziegler spectra.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年05月06日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Liran Shaul 氏 (Charles University)
Derived quotients of Cohen-Macaulay rings (English)
[ 講演概要 ]
It is well known that if A is a Cohen-Macaulay ring and $a_1,\dots,a_n$ is an $A$-regular sequence, then the quotient ring $A/(a_1,\dots,a_n)$ is also a Cohen-Macaulay ring. In this talk we explain that by deriving the quotient operation, if A is a Cohen-Macaulay ring and $a_1,\dots,a_n$ is any sequence of elements in $A$, the derived quotient of $A$ with respect to $(a_1,\dots,a_n)$ is Cohen-Macaulay. Several applications of this result are given, including a generalization of Hironaka's miracle flatness theorem to derived algebraic geometry.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年04月22日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Julian Külshammer‬ 氏 (Uppsala University)
Exact categories via A-infinity algebras (English)
[ 講演概要 ]
Many instances of extension closed subcategories appear throughout representation theory, e.g. filtered modules, Gorenstein projectives, as well as modules of finite projective dimension. In the first part of the talk, I will outline a general strategy to realise such subcategories as categories of induced modules from a subalgebra using A-infinity algebras. In the second part, I will describe how this strategy has been successfully applied for the exact category of filtered modules over a quasihereditary algebra. In particular I will present compatibility results of this approach with heredity ideals in a quasihereditary algebra from joint work with Teresa Conde.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年04月08日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Kevin Coulembier 氏 (Univeristy of Sydney)
Abelian envelopes of monoidal categories (English)
[ 講演概要 ]
For the purposes of this talk, a ‘tensor category’ is an abelian rigid monoidal category, linear over some field. I will try to argue that there are good reasons (inspired by classification attempts of tensor categories, by motives, by Frobenius twists on tensor categories and by the idea of universal tensor categories), to try to associate tensor categories to non-abelian rigid monoidal categories. Then I will comment on some of the recent progress made on such constructions (in work of Benson, Comes, Entova, Etingof, Heidersdof, Hinich, Ostrik, Serganova and myself).
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年03月11日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
和地 輝仁 氏 (北海道教育大学)
相対不変式で生成されるゴレンスタイン環のレフシェッツ性 (Japanese)
[ 講演概要 ]
可換環論にアルチン次数環のレフシェッツ性の問題がある。これは、コホモロジー環が満たす性質を抽出した性質である。表現論的に興味のある環、例えば、複素鏡映群の余不変式環のほぼすべてがレフシェッツ性を持つことが証明されていたり、Schur-Weyl双対性に関わる環がレフシェッツ性を持つことも知られている。

他方、斉次多項式 F が与えられたとき、別の多項式を微分作用素と見て F に作用させることを考え、Fを消す多項式全体のなすイデアルによる剰余環を作ると、アルチンゴレンスタイン次数環が得られる。そこで、多項式 F が与えられたとき、こうして作られる環がレフシェッツ性を持つかどうかという問題が考えられる。

例えば、F が単項式や差積などの場合はレフシェッツ性が証明されているが、レフシェッツ性を持つための F の条件は一般には何も知られていない。この講演では、F が行列式、対称行列の行列式、パフィアン等の場合にレフシェッツ性が証明されることを紹介する。

これらのレフシェッツ性は概均質ベクトル空間の正則性との関係があり、また、証明に一般Verma加群を用いるなど、可換環論の問題ではあるが表現論が活用できることを中心に話したい。

この講演は、京都大学の長岡高広氏との共同研究に基づく。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年02月24日(水)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
齋藤 峻也 氏 (名古屋大学)
周期三角圏上の傾理論 (Japanese)
[ 講演概要 ]
周期三角圏とは、シフト関手のある累乗が恒等関手になる三角圏であり、Cohen-Macaulay表現論や自己移入多元環の表現論で自然に姿を現す。このような三角圏は周期性から傾対象を決して持たず、特に代数上の導来圏と三角同値にならないことが知られている。本講演では、傾理論の周期三角圏における類似である周期傾理論について紹介する。まず、導来圏の周期類似である周期導来圏について説明し、周期傾対象を持つ三角圏は周期導来圏と三角同値になるという周期傾定理を紹介する。最後に、DG代数を用いた証明手法について触れる。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年02月10日(水)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
池田 曉志 氏 (城西大学)
Gentle代数の2重次数付きCalabi-Yau完備化と曲面の幾何学 (Japanese)
[ 講演概要 ]
Gentle代数は多元環の表現論において非常に重要な研究対象であるが, 近年, Haiden-Katzarkov-Kontsevich(HKK)は次数付きgentle代数の導来圏に対し, 曲面の(位相的)深谷圏との導来同値を与えた. この対応においては, 直既約加群と曲面上のあるクラスの弧の対応が与えられている.

一方, (punctureの無い)曲面の三角形分割から現れるquiver with potentialのGinzburg Calabi-Yau(CY)-3代数の導来圏に対し, Qiuは(到達可能な)球面対象と曲面のあるクラスの弧の対応を与えた. このCY-3代数のJacobi代数はあるクラスのgentle代数になるので, Qiuによる結果は, HKKによる結果の一部をCY-完備化にリフトしたように見ることもできる.

この背景に基づき, この講演ではまず最初に次数付きgentle代数に付随した2重次数付きquiver with potential構成法を曲面の深谷圏から来る幾何学的アイディアに沿って説明し, そのGinzburg CY代数を用いて一般的なgentle代数のCY-X完備化の構成について説明をする. (Xは2重次数の中のコホモロジー的次数とは独立な方向の次数.)
次に, このようにして得られたCY-X代数の導来圏の(到達可能)球面対象が, ある曲面の無限巡回被覆として得られる被覆空間の中の弧と対応するという, QiuのCY-3の場合の結果の一般化, あるいはHKKの結果のCY完備化へのリフトに相当する結果について説明をする. 時間があれば, Xを整数Nに特殊化することで曲面のN角形分割に付随したquiver with potentialの構成になっていることについても説明をしたいと考えている.
この結果は, Yu Qiu氏, Yu Zhou氏との共同研究に基づく.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年01月21日(木)

17:00-18:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
渡邉 英也 氏 (京都大学)
Based modules over the i-quantum group of type AI (Japanese)
[ 講演概要 ]
In recent years, i-quantum groups are intensively studied because of their importance in various branches of mathematics and physics. Although i-quantum groups are thought of as generalizations of Drinfeld-Jimbo quantum groups, their representation theory is much more difficult than that of quantum groups. In this talk, I will focus on the i-quantum group of type AI. It is a non-standard quantization of the special orthogonal Lie algebra so_n. I will report my recent research on based modules, which are modules equipped with distinguished bases, called the i-canonical bases. The first main result is a new combinatorial formula describing the branching rule from sl_n to so_n. The second one is the irreducibility of cell modules associated with the i-canonical bases.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年01月14日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
大川 領 氏 (神戸大学)
$(-2)$ blow-up formula (Japanese)
[ 講演概要 ]
この講演では$A_1$特異点から定まるネクラソフ分配関数について紹介する. これは特異点解消上の枠付き連接層のモジュライにおける積分を係数とする母関数である. 特異点解消として二つ, 極小解消とスタック的な解消, つまり, 射影平面を位数$2$の巡回群で割った商スタックを考える. これら二つの特異点解消から定まるネクラソフ分配関数の関数等式について紹介する. ひとつは, 伊藤-丸吉-奥田が予想した関数等式であり, もうひとつを$(-2)$ blow-up formulaとして提案したい. 証明については細部を省略し, 望月拓郎氏による壁越え公式について基本的な例を使って紹介する。
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2020年12月17日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Xiao-Wu Chen 氏 (University of Science and Technology of China)
The finite EI categories of Cartan type (English)
[ 講演概要 ]
We will recall the notion of a finite free EI category introduced by Li. To each Cartan triple, we associate a finite free EI category, called the finite EI category of Cartan type. The corresponding category algebra is isomorphic to the 1-Gorenstein algebra, introduced by Geiss-Leclerc-Schroer, that is associated to possibly another Cartan triple. The construction of the second Cartan triple is related to the well-known unfolding of valued graphs. We will apply the obtained algebra isomorphism to re-interpret some tau-locally free modules as induced modules over a certain skew group algebra. This project is joint with Ren Wang.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

< 前へ 123 次へ >