東京名古屋代数セミナー
過去の記録 ~07/03|次回の予定|今後の予定 07/04~
担当者 | 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、淺井 聡太、高橋 亮 |
---|---|
セミナーURL | http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html |
2025年07月15日(火)
15:30-17:00 オンライン開催
廣田 竣介 氏 (京都大学)
super category Oにおけるsemibrick (Japanese)
https://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
廣田 竣介 氏 (京都大学)
super category Oにおけるsemibrick (Japanese)
[ 講演概要 ]
標数0の閉体上で、双対余根基可換な有限次元basic Hopf代数の分類は、"本質的に異なる基底の取り方を許すroot系"または"Conway-Coxeterのfrieze patternの高階版"ともいえる、Heckenberger-山根(2008)のWeyl groupoidがよく説明する。Weyl groupoidの少なくないクラスはKac-Moody Lie超代数から来る。古典的category Oは最高ウェイト圏の代表的な例とされるが、super category Oは複数の最高ウェイト構造を備えた圏の好例と考えられ、homの記述が容易な加群であるVerma加群がある意味多数存在することによりsemibrickが自然に生じ易い。本講演では、semibrickの概念なしに定式化し難い初歩的な結果や、super category Oのホモロジー代数的な側面を紹介したい。
Zoom ID: 815 5125 0164 Password: 952236
[ 講演参考URL ]標数0の閉体上で、双対余根基可換な有限次元basic Hopf代数の分類は、"本質的に異なる基底の取り方を許すroot系"または"Conway-Coxeterのfrieze patternの高階版"ともいえる、Heckenberger-山根(2008)のWeyl groupoidがよく説明する。Weyl groupoidの少なくないクラスはKac-Moody Lie超代数から来る。古典的category Oは最高ウェイト圏の代表的な例とされるが、super category Oは複数の最高ウェイト構造を備えた圏の好例と考えられ、homの記述が容易な加群であるVerma加群がある意味多数存在することによりsemibrickが自然に生じ易い。本講演では、semibrickの概念なしに定式化し難い初歩的な結果や、super category Oのホモロジー代数的な側面を紹介したい。
Zoom ID: 815 5125 0164 Password: 952236
https://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html