東京確率論セミナー
過去の記録 ~06/30|次回の予定|今後の予定 07/01~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/ |
2025年06月30日(月)
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
Hugo Da Cunha 氏 (Université Lyon 1)
Boundary effects in the Facilitated Exclusion Process
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
Hugo Da Cunha 氏 (Université Lyon 1)
Boundary effects in the Facilitated Exclusion Process
[ 講演概要 ]
The Facilitated Exclusion Process (FEP) is a model of stochastic interacting particle system whose dynamics is subject to kinetic constraints, leading to a phase transition at the critical density 1/2: under this threshold, the system is completely frozen. In recent years, the FEP has been extensively studied on the periodic setting, but in this talk I will consider it with boundary conditions. I will focus first on open boundaries, with particles reservoirs at both ends allowing creation/annihilation of particles. If time allows, I will also consider the case of closed boundaries, when there are impermeable walls at both ends.
At the macroscopic level, the boundary dynamics impose some boundary conditions on the PDE describing the hydrodynamic limit, that can be of different types (such as Dirichlet, Neumann or Robin). These boundary conditions are not standard as they differ from what is usually found in other exclusion processes, and this is due to the two-phased nature of FEP.
This talk is based on joint works with Clément Erignoux, Marielle Simon and Lu Xu.
The Facilitated Exclusion Process (FEP) is a model of stochastic interacting particle system whose dynamics is subject to kinetic constraints, leading to a phase transition at the critical density 1/2: under this threshold, the system is completely frozen. In recent years, the FEP has been extensively studied on the periodic setting, but in this talk I will consider it with boundary conditions. I will focus first on open boundaries, with particles reservoirs at both ends allowing creation/annihilation of particles. If time allows, I will also consider the case of closed boundaries, when there are impermeable walls at both ends.
At the macroscopic level, the boundary dynamics impose some boundary conditions on the PDE describing the hydrodynamic limit, that can be of different types (such as Dirichlet, Neumann or Robin). These boundary conditions are not standard as they differ from what is usually found in other exclusion processes, and this is due to the two-phased nature of FEP.
This talk is based on joint works with Clément Erignoux, Marielle Simon and Lu Xu.