トポロジー火曜セミナー
過去の記録 ~03/17|次回の予定|今後の予定 03/18~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2024年06月25日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
RIKEN iTHEMS との共同開催。対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Emmy Murphy 氏 (University of Toronto)
Liouville symmetry groups and pseudo-isotopies (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
RIKEN iTHEMS との共同開催。対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Emmy Murphy 氏 (University of Toronto)
Liouville symmetry groups and pseudo-isotopies (ENGLISH)
[ 講演概要 ]
Even though $\mathbb{C}^n$ is the most basic symplectic manifold, when $n>2$ its compactly supported symplectomorphism group remains mysterious. For instance, we do not know if it is connected. To understand it better, one can define various subgroups of the symplectomorphism group, and a number of Serre fibrations between them. This leads us to the Liouville pseudo-isotopy group of a contact manifold, important for relating (for instance) compactly supported symplectomorphisms of $\mathbb{C}^n$, and contactomorphisms of the sphere at infinity. After explaining this background, the talk will focus on a new result: that the pseudo-isotopy group is connected, under a Liouville-vs-Weinstein hypothesis.
[ 参考URL ]Even though $\mathbb{C}^n$ is the most basic symplectic manifold, when $n>2$ its compactly supported symplectomorphism group remains mysterious. For instance, we do not know if it is connected. To understand it better, one can define various subgroups of the symplectomorphism group, and a number of Serre fibrations between them. This leads us to the Liouville pseudo-isotopy group of a contact manifold, important for relating (for instance) compactly supported symplectomorphisms of $\mathbb{C}^n$, and contactomorphisms of the sphere at infinity. After explaining this background, the talk will focus on a new result: that the pseudo-isotopy group is connected, under a Liouville-vs-Weinstein hypothesis.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html