数値解析セミナー

過去の記録 ~09/18次回の予定今後の予定 09/19~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室
担当者 齊藤宣一、柏原崇人
セミナーURL https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/

2024年05月15日(水)

16:30-18:00   数理科学研究科棟(駒場) 002号室
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
榊原航也 氏 (金沢大学理工研究域)
離散最適輸送問題の Bregman ダイバージェンスによる正則化 (Japanese)
[ 講演概要 ]
最適輸送理論は確率測度間の距離を測ることを可能とし,数学や物理学,経済学,統計学,コンピュータ科学,機械学習等,数多くの分野への応用を持つ.有限集合上での最適輸送問題を考えると,これは線型計画問題に他ならず,組合せ論的アルゴリズムや内点法など,様々な数値計算手法が提案されてきたが,計算量の問題により高次元の場合には求解が難しいことが知られている.その中で,2013年に M. Cuturi はコスト函数に Kullback–Leibler(KL)ダイバージェンスを足し合わせる正則化(エントロピー正則化)を考え,Sinkhorn アルゴリズムに基づいた「光速」な数値計算法を提唱した.このアルゴリズムの誕生以降,最適輸送は機械学習分野で盛んに用いられるようになり,近年では改めて大きな注目を集めている.
エントロピー正則化の有効性が分かった上で,数学的にも応用的にも以下のような疑問が生じる.
・KL ダイバージェンス以外での正則化は可能か?
・他の正則化を用いた際,正則化パラメータを 0 にする極限での元の最適輸送問題の最適コストへの収束オーダーはどのように評価できるか?
・KL ダイバージェンスの場合よりも収束が速い正則化項は存在するか?
本講演では,上記の疑問に答えるべく,KL ダイバージェンスを含むクラスである Bregman ダイバージェンスを用いた正則化を考える.ある性質を満たす Bregman ダイバージェンスを用いる場合,KL ダイバージェンスを用いた場合よりも収束が速くなることを示し,そのような具体例を数値実験とともに提示する.時間が許せば,現在考えている問題や将来的な応用の可能性についても触れたい.
本講演は,高津飛鳥氏(東京都立大学),保國惠一氏(筑波大学)との共同研究に基づく.また,本講演の内容は以下のプレプリントにまとまっている.
 K. Morikuni, K. Sakakibara, and A. Takatsu. Error estimate for regularized optimal transport problems via Bregman divergence. arXiv:2309.11666
[ 参考URL ]
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/