数値解析セミナー

過去の記録 ~05/28次回の予定今後の予定 05/29~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室
担当者 齊藤宣一、柏原崇人
セミナーURL https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/

2023年10月17日(火)

16:30-18:00   数理科学研究科棟(駒場) 002号室
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
奥村真善美 氏 (甲南大学知能情報学部)
空間2次元における動的境界条件下のCahn-Hilliard方程式に対する構造保存スキームについて (Japanese)
[ 講演概要 ]
偏微分方程式の初期値境界値問題において, 動的境界条件を課した問題が幅広く研究されている. この境界条件は, 領域内部と境界の相互作用を表現するために導入された条件であり, 条件内に未知関数の時間微分を含む. それゆえ, 代表的な境界条件と異なり, 動境界条件は, 領域内部の力学系と同時に境界上でも同種, あるいは異種の力学系を考察することができ, その境界値問題は領域内部の方程式と境界上の方程式の連立系と見なすこともできる. 近年, 相分離現象を記述するCahn-Hilliard方程式に対し, 境界上でもCahn-Hilliard方程式を考察する動的境界条件を課したモデルがGoldstein-Miranville-Schimperna (GMS)やLiu-Wu (LW)によって提唱された. 両者は化学ポテンシャルの外向き単位法線方向微分の扱いが異なっており, GMSモデルでは領域内部と境界の質量和が保存するという保存則, LWモデルでは内部と境界それぞれで質量が保存するという保存則が成り立つ. さらにはいずれのモデルにおいても領域内部と境界のエネルギーの総和が減衰するという総エネルギー散逸則が成り立つことにも注意したい. これらの性質は数値計算においても重要な意味を持ち, その構造をスキームが離散的に再現することで, 安定な計算が可能になるなどの様々な恩恵がある. 本研究では, 先行研究を踏まえ, これらの性質を離散的に再現する構造保存スキームを構成した. 本講演では, それらの構造保存スキームを紹介するとともに, GMSモデル対する構造保存スキームに焦点を当て, その可解性について得られた結果を報告する. また, 両モデルの保存則の違いに起因する, 数値解の挙動の違いも興味深く, その数値計算例も紹介する.

本研究は深尾武史氏(龍谷大学)との共同研究に基づく.
[ 参考URL ]
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/