東京名古屋代数セミナー
過去の記録 ~12/07|次回の予定|今後の予定 12/08~
担当者 | 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、中岡 宏行、高橋 亮 |
---|---|
セミナーURL | http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html |
2023年07月14日(金)
10:30-12:00 オンライン開催
Michael Wemyss 氏 (University of Glasgow)
Local Forms of Noncommutative Functions and Applications (English)
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
Michael Wemyss 氏 (University of Glasgow)
Local Forms of Noncommutative Functions and Applications (English)
[ 講演概要 ]
This talk will explain how Arnold's results for commutative singularities can be extended into the noncommutative setting, with the main result being a classification of certain Jacobi algebras
arising from (complete) free algebras. This class includes finite dimensional Jacobi algebras, and also Jacobi algebras of GK dimension one, suitably interpreted. The surprising thing is that a classification should exist at all, and it is even more surprising that ADE enters.
I will spend most of my time explaining what the algebras are, what they classify, and how to intrinsically extract ADE information from them. At the end, I'll explain why I'm really interested in this problem, an update including results on different quivers, and the applications of the above classification to curve counting and birational geometry. This is joint work with Gavin Brown.
Meeting ID: 863 9598 8196
passcode: 423160
[ 講演参考URL ]This talk will explain how Arnold's results for commutative singularities can be extended into the noncommutative setting, with the main result being a classification of certain Jacobi algebras
arising from (complete) free algebras. This class includes finite dimensional Jacobi algebras, and also Jacobi algebras of GK dimension one, suitably interpreted. The surprising thing is that a classification should exist at all, and it is even more surprising that ADE enters.
I will spend most of my time explaining what the algebras are, what they classify, and how to intrinsically extract ADE information from them. At the end, I'll explain why I'm really interested in this problem, an update including results on different quivers, and the applications of the above classification to curve counting and birational geometry. This is joint work with Gavin Brown.
Meeting ID: 863 9598 8196
passcode: 423160
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html