東京名古屋代数セミナー

過去の記録 ~08/15次回の予定今後の予定 08/16~

担当者 阿部 紀行、Aaron Chan、Erik Darpoe、伊山 修、中村 力、中岡 宏行、高橋 亮
セミナーURL http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月15日(水)

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
Nicholas Williams 氏 (東京大学)
Cyclic polytopes and higher Auslander--Reiten theory 1 (English)
[ 講演概要 ]
In this series of three talks, we expand upon the previous talk given at the seminar and study the relationship between cyclic polytopes and higher Auslander--Reiten theory in more detail.
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNA/2021/Williams-Cyclic_polytopes_and_higher_AR.pdf

In the first talk, we focus on cyclic polytopes. We survey important properties of cyclic polytopes, such as different ways to construct them, the Upper Bound Theorem, and their Ramsey-theoretic properties. We then move on to triangulations of cyclic polytopes. We give efficient combinatorial descriptions of triangulations of even-dimensional and odd-dimensional cyclic polytopes, which we will use in subsequent talks. We finally define the higher Stasheff--Tamari orders on triangulations of cyclic polytopes. We give important results on the orders, including Rambau's Theorem, and the equality of the two orders.
[ 講演参考URL ]
https://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html