東京名古屋代数セミナー
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
担当者 | 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、中岡 宏行、高橋 亮 |
---|---|
セミナーURL | http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html |
2022年01月21日(金)
16:45-18:15 オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
榎本 悠久 氏 (大阪府立大学)
Exact-categorical properties of subcategories of abelian categories 2 (Japanese)
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
オンライン開催の詳細は下記URLをご覧ください。
榎本 悠久 氏 (大阪府立大学)
Exact-categorical properties of subcategories of abelian categories 2 (Japanese)
[ 講演概要 ]
Quillen's exact category is a powerful framework for studying extension-closed subcategories of abelian categories, and provides many interesting questions on such subcategories.
In the first talk, I will explain the basics of some properties and invariants of exact categories (e.g. the Jordan-Holder property, simple objects, and Grothendieck monoid).
In the second talk, I will give some results and questions about particular classes of exact categories arising in the representation theory of algebras (e.g. torsion(-free) classes over path algebras and preprojective algebras).
If time permits, I will discuss questions of whether these results can be generalized to extriangulated categories (extension-closed subcategories of triangulated categories).
[ 講演参考URL ]Quillen's exact category is a powerful framework for studying extension-closed subcategories of abelian categories, and provides many interesting questions on such subcategories.
In the first talk, I will explain the basics of some properties and invariants of exact categories (e.g. the Jordan-Holder property, simple objects, and Grothendieck monoid).
In the second talk, I will give some results and questions about particular classes of exact categories arising in the representation theory of algebras (e.g. torsion(-free) classes over path algebras and preprojective algebras).
If time permits, I will discuss questions of whether these results can be generalized to extriangulated categories (extension-closed subcategories of triangulated categories).
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html