## トポロジー火曜セミナー

開催情報 火曜日　17:00～18:30　数理科学研究科棟(駒場) 056号室 河野 俊丈, 河澄 響矢, 北山 貴裕, 逆井卓也 http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html Tea: 16:30 - 17:00 コモンルーム

### 2021年06月08日(火)

17:00-18:00   オンライン開催

Graphs whose Kronecker coverings are bipartite Kneser graphs (JAPANESE)
[ 講演概要 ]
Kronecker coverings are bipartite double coverings of graphs which are canonically determined. If a graph G is non-bipartite and connected, then there is a unique bipartite double covering of G, and the Kronecker covering of G coincides with it.

In general, there are non-isomorphic graphs although they have the same Kronecker coverings. Therefore, for a given bipartite graph X, it is a natural problem to classify the graphs whose Kronecker coverings are isomorphic to X. Such a classification problem was actually suggested by Imrich and Pisanski, and has been settled in some cases.

In this lecture, we classify the graphs whose Kronecker coverings are bipartite Kneser graphs H(n, k). The Kneser graph K(n, k) is the graph whose vertex set is the family of k-subsets of the n-point set {1, …, n}, and two vertices are adjacent if and only if they are disjoint. The bipartite Kneser graph H(n, k) is the Kronecker covering of K(n, k). We show that there are exactly k graphs whose Kronecker coverings are H(n, k) when n is greater than 2k. Moreover, we determine their automorphism groups and chromatic numbers.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html